Физическая передача данных по линиям связи. Виды и способы передачи информации

💖 Нравится? Поделись с друзьями ссылкой

Всем привет! Сегодня будет довольно графичная статейка, поясняющая, как будет производится передача данных в локальных сетях с привлечением протоколов различного уровня.

Исходная ситуация

Итак, вначале мы имеем некое приложение, которому нужно отправить данные в другое приложение. Пусть исходный Узел 1 захотел передать что-то на Узел 2. IP адреса соответственно 192.168.1.1 и.2. Согласно схеме…

Поэтапная передача пакета

  1. Узел 1. (Прикладной уровень) “Мне нужно передать данные на 192.168.1.2 на порт 2099 , надежность доставки не требуется!”.
  2. Узел 1. (Транспортный уровень) “Окей, подойдёт UDP протокол, давай сюда свои данные”.
  3. Узел 1. (Прикладной уровень) “На, держи! ” — произвольные 16-ричные данные. (далее <данные> )
  4. Узел 1. (Транспортный уровень) “Отлично. Прикреплю-ка я к ним заголовок UDP, чтобы не потерять пакет. В заголовке зафиксируем некоторые данные и номера портов. Какой там свободный? UDP:42133 ! Отлично. А порт назначения UDP:2099 . Такой заголовок и прикрепим. Спускаем пакет дальше, на сетевой уровень. (Пакет: [<заголовок транспортного уровня> <данные> ]
  5. Узел 1. (Сетевой уровень) “Получил ваш пакет, куда передавать? На IP:192.168.1.2? Прикреплю к этому заголовку ещё и информацию сетевого уровня. Ну и свой обратный IP: 192.168.1.1 и ещё некоторую информацию от себя… Эй, канальный уровень! Тут для тебя пакет!”. [<заголовок сетевого уровня> <заголовок транспортного уровня> <данные> ]
  6. Узел 1. (Канальный уровень) “Оп-па. Пакет. А куда доставить? Смотрим по заголовку… Такс, на 192.168.1.2. Хммм.. Не помню адреса MAC, связанного с этим IP, гляну в таблице коммутации apr… Хм. Нет такого адреса у меня пока. Будем запрашивать у среды. Пакет пока отложим.”
  7. (парковка пакета)
  8. Узел 1. (Канальный уровень) “Эй, среда! Есть в сети кто-то с 192.168.1.2? Ответьте на мой MAC: 0001.43B7.623C! У меня для вас пакет! Физический уровень, передай это плз.!”
  9. Узел 1. (Физический уровень) Рассылается вышеуказанный широковещательный пакет всем станциям (на адрес FFFF.FFFF.FFFF)
    Каждая станция в широковещательном домене получит этот пакет и проигнорирует его в том случае, если её IP отличается от IP в этом пакете. Станция же, чей IP-адрес совпадает с указанным ответит встречным пакетом.
  10. Коммутатор. “Я получил кадр со стороны порта 1. Анализирую назначение. О! Широковещательный кадр. Отправлю его на все остальные порты кроме того, откуда он пришёл. На всякий случай запомню, что на первом порту у меня ”.
  11. Узел 3. (Физический) “Я получил широковещательный кадр. Канальный, передаю”.
  12. Узел 3. (Канальный) “Получил. Эй, сетевой! там спрашивают IP 192.168.1.2, а у нас 192.168.1.3. Игнорируем.”
  13. Узел 2. (Физический) “Я получил широковещательный кадр. Канальный! Передаю тебе”.
  14. Узел 2. (Канальный уровень) “Понял! О! Это для меня! Физический, телеграфируй обратно следующее: Послушай, 0001.43B7.623C! Это я! У меня IP адрес 192.168.1.2! Запомни мой MAC 0004.9A41.0966 у себя в таблице коммутации. И не забудь про пакет!”.
  15. Коммутатор. “Я получил кадр со стороны порта 2. для MAC: 0001.43B7.623C. Судя по таблице, он у меня на стороне порта 1. Передам кадр в этот порт. А попутно сохраню адрес 0004.9A41.0966 как адрес на стороне порта 2, пригодится”.
  16. Узел 1. (Канальный уровень) “Нашёлся обладатель адреса 192.168.1.2. Теперь я прикреплю к пакету адрес назначения , а так же свой обратный MAC и отдам на физический уровень для передачи. Физический! Держи пакет!”. [<заголовок канального уровня> <заголовок сетевого уровня> <заголовок транспортного уровня> <данные> ]
  17. Узел 1. (Физический уровень) “Ок.”
  18. Коммутатор. “Оп-па, получил кадр для MAC: 0004.9A41.0966. Он у меня со стороны порта 2. Посылаю кадр туда”.
  19. Узел 2. (Физический уровень) “Принял кадр. Передаю на канальный уровень”. [<заголовок канального уровня> <заголовок сетевого уровня> <заголовок транспортного уровня> <данные> ]
  20. Узел 2. (Канальный) “Так, пришел пакет от 0001.43B7.623C. Действительно для меня. А в нем какие-то данные протокола IP. Это не моя тема, я уберу заголовок своего уровня и отдам выше, на сетевой”.[<заголовок сетевого уровня> <заголовок транспортного уровня> <данные> ]
  21. Узел 2. (Сетевой) “Какой-то пакет от IP 192.168.1.1, а в нем какие-то данные транспортного уровня. Пакет для IP: 192.168.1.2, передам в соответствующий интерфейс, пусть там разбираются транспортники”.[<заголовок транспортного уровня> <данные> ]
  22. Узел 2. (Транспортный) “Пришел пакет от сетевого, там данные для порта 2099, висит какой-то сервис, ждёт пакет. Передайте!” [<данные> ]
  23. Узел 2. (Прикладной) “Урра! Данные для меня!. Спасибо за внимание ^_^”

Вам так же понравится:

Получение учётных записей пользователей в локальной сети

То есть в узком смысле - это глобальное сообщество малых и больших сетей. В более широком смысле - это глобальное информационное пространство, хранящее огромное количество информации на миллионах компьютеров, которые обмениваются данными.

В 1969 году, когда был создан Интернет, эта сеть объединяла всего лишь четыре хост-компьютера, а сегодня их число измеряется десятками миллионов. Каждый компьютер, подключенный к Интернету, - это часть Сети.

Для того чтобы начать с наиболее привычной всем схемы, рассмотрим, как подключается к Интернету домашний компьютер, и проследим, по каким каналам путешествует информация, передаваемая и принимаемая нами из Сети. Если вы выходите в Интернет с домашнего компьютера, то, скорее всего, используете модемное подключение (рис. 1).

В принципе, соединение с провайдером может идти по различным каналам: по телефонной линии, по выделенной линии, на основе беспроводной или спутниковой связи, по сети кабельного телевидения или даже по силовым линиям - все эти альтернативные варианты показаны на рис. 1 .

Чаще всего это так называемое временное (сеансовое) соединение по телефонной линии. Вы набираете один из телефонных номеров, который предоставил вам провайдер, и дозваниваетесь на один из его модемов. На рис. 1 показан набор модемов провайдера, так называемый модемный пул. После того как вы соединились с вашим ISP (Internet Service Provider)-провайдером, вы становитесь частью сети данного ISP. Провайдер предоставляет своим пользователям различные сервисы, электронную почту, Usenet и т.д.

Каждый провайдер имеет свою магистральную сеть, или бэкбоун . На рис. 1 мы условно изобразили магистральную сеть некоего провайдера ISP-A. Его магистральная сеть показана зеленым цветом.

Обычно ISP-провайдеры - это крупные компании, которые в ряде регионов имеют так называемые точки присутствия (POP, Point of Presence), где происходит подключение локальных пользователей.

Обычно крупный провайдер имеет точки присутствия (POP) в нескольких крупных городах. В каждом городе находятся аналогичные модемные пулы, на которые звонят локальные клиенты этого ISP в данном городе. Провайдер может арендовать волоконно-оптические линии у телефонной компании для соединения всех своих точек присутствия (POP), а может протянуть свои собственные волоконно-оптические линии. Крупнейшие коммуникационные компаний имеют собственные высокопропускные каналы. На рис. 1 мы показали опорные сети двух Интернет-провайдеров. Очевидно, что все клиенты провайдера ISP-А могут взаимодействовать между собой по собственной сети, а все клиенты компании ISP-В - по своей, но при отсутствии связи между сетями ISP-A и ISP-B клиенты компании «A» и клиенты компании «В» не могут связаться друг с другом. Для реализации данной услуги компании «A» и «B» договариваются подключиться к так называемым точкам доступа (NAP - Network Access Points) в разных городах, и трафик между двумя компаниями течет по сетям через NAP. На рис. 1 показаны магистральные сети только двух ISP-провайдеров. Аналогично организуется подключение к другим магистральным сетям, в результате чего образуется объединение множества сетей высокого уровня.

В Интернете действуют сотни крупных Интернет-провайдеров, их магистральные сети связаны через NAP в различных городах, и миллиарды байтов данных текут по разным сетям через NAP-узлы.

Если вы пользуетесь Интернетом в офисе, то, скорее всего, вы подключены к локальной сети (LAN - Local Area Network). В этом случае рассмотренная нами схема несколько видоизменяется (рис. 2). Сеть организации обычно отделена от внешнего мира определенной службой защиты информации, которая на нашей схеме условно показана в виде кирпичной стены. Варианты подключения к провайдеру могут быть различными, хотя чаще всего это выделенная линия.

Поскольку невозможно схематически отразить всю совокупность сетей Интернета, ее часто изображают в виде размытого облака, выделяя в нем лишь основные элементы: маршрутизаторы, точки присутствия (POP) и места доступа (NAP).

Скорость передачи информации на различных участках Сети существенно различается. Магистральные линии, или бэкбоуны, связывают все регионы мира (рис. 5) - это высокоскоростные каналы, построенные на основе волоконно-оптических кабелей. Кабели обозначаются OC (optical carrier), например OC-3, OC-12 или OC-48. Так, линия OC-3 может передавать 155 Мбит/с, а OC-48 - 2488 Мбит/с (2,488 Гбит/с). В то же время получение информации на домашний компьютер с модемным подключением 56 K происходит со скоростью всего 56 000 бит/с.

Как происходит передача информации в Интернете

Маршрутизаторы

Как же происходит передача информации по всем этим многочисленным каналам? Как сообщение может быть доставлено с одного компьютера на другой через весь мир, пройдя несколько различных сетей за долю секунды? Для того чтобы объяснить этот процесс, необходимо ввести несколько понятий и прежде всего рассказать о работе маршрутизаторов. Доставка информации по нужному адресу невозможна без маршрутизаторов, определяющих, по какому маршруту передавать информацию. Маршрутизатор - это устройство, которое работает с несколькими каналами, направляя в выбранный канал очередной блок данных. Выбор канала осуществляется по адресу, указанному в заголовке поступившего сообщения.

Таким образом, маршрутизатор выполняет две различные, но взаимосвязанные функции. Во-первых, он направляет информацию по свободным каналам, предотвращая «закупорку» узких мест в Сети; во-вторых, проверяет, что информация следует в нужном направлении. При объединении двух сетей маршрутизатор включается в обе сети, пропуская информацию из одной в другую, и в некоторых случаях осуществляет перевод данных из одного протокола в другой, при этом защищая сети от лишнего трафика. Эту функцию маршрутизаторов можно сравнить с работой патрульной службы, которая с вертолета ведет наблюдение за движением в городе, контролирует общую ситуацию с поломками и заторами на дорогах и сообщает о наиболее загруженных участках трассы, чтобы водители выбирали оптимальный маршрут и не попадали в пробки.

Протоколы Интернета

ерейдем теперь к рассмотрению способов передачи информации в Интернете. Для этого необходимо ввести такое понятие, как протокол. В широком смысле протокол - это заранее оговоренное правило (стандарт), по которому тот, кто хочет использовать определенный сервис, взаимодействует с последним. Применительно к Интернету протокол - это правило передачи информации в Сети.

Следует различать два типа протоколов: базовые и прикладные. Базовые протоколы отвечают за физическую пересылку сообщений между компьютерами в сети Интернет. Это протоколы IP и TCP. Прикладными называют протоколы более высокого уровня, они отвечают за функционирование специализированных служб. Например, протокол http служит для передачи гипертекстовых сообщений, протокол ftp - для передачи файлов, SMTP - для передачи электронной почты и т.д.

Набор протоколов разных уровней, работающих одновременно, называют стеком протоколов. Каждый нижележащий уровень стека протоколов имеет свою систему правил и предоставляет сервис для вышележащих.

Такое взаимодействие можно сравнить со схемой пересылки обычного письма. Например, директор фирмы «А» пишет письмо и отдает его секретарю. Секретарь помещает письмо в конверт, надписывает адрес и относит конверт на почту. Почта доставляет письмо в почтовое отделение. Почтовое отделение связи доставляет письмо получателю - секретарю директора фирмы «B». Секретарь распечатывает конверт и передает письмо директору фирмы «В». Информация (письмо) передается с верхнего уровня на нижний, обрастая на каждой стадии дополнительной служебной информацией (пакет, адрес на конверте, почтовый индекс, контейнер с корреспонденцией и т.д.), которая не имеет отношения к тексту письма.

Нижний уровень - это уровень почтового транспорта, которым письмо перевозится в пункт назначения. В пункте назначения происходит обратный процесс: корреспонденция извлекается, считывается адрес, почтальон несет конверт секретарю фирмы «B», который достает письмо, определяет его срочность, важность и в зависимости от этого передает информацию выше. Директора фирм «А» и «Б», передавая друг другу информацию, не заботятся о проблемах пересылки этой информации, подобно тому как секретаря не волнует, как доставляется почта.

Аналогично каждый протокол в стеке протоколов выполняет свою функцию, не заботясь о функциях протокола другого уровня.

На нижнем уровне, то есть на уровне TCP/IP , используется два основных протокола: IP (Internet Protocol - протокол Интернета) и ТСР (Transmission Control Protocol - протокол управления передачей).

Архитектура протоколов TCP/IP предназначена для объединенной сети. Интернет состоит из разнородных подсетей, соединенных друг с другом шлюзами. В качестве подсетей могут выступать разные локальные сети (Token Ring, Ethernet и т.п.), различные национальные, региональные и глобальные сети. К этим сетям могут подключаться машины разных типов. Каждая из подсетей работает в соответствии со своими принципами и типом связи. При этом каждая подсеть может принять пакет информации и доставить его по указанному адресу. Таким образом, требуется, чтобы каждая подсеть имела некий сквозной протокол для передачи сообщений между двумя внешними сетями.

Разобраться в работе протоколов поможет схема на рис. 6 . Предположим, имеется некое послание, отправляемое по электронной почте. Передача почты осуществляется по прикладному протоколу SMTP, который опирается на протоколы TCP/IP. Согласно протоколу TCP, отправляемые данные разбиваются на небольшие пакеты фиксированной структуры и длины, маркирующиеся таким образом, чтобы при получении данные можно было бы собрать в правильной последовательности.

Обычно длина одного пакета не превышает 1500 байт. Поэтому одно электронное письмо может состоять из нескольких сотен таких пакетов. Малая длина пакета не приводит к блокировке линий связи и не позволяет отдельным пользователям надолго захватывать канал связи.

К каждому полученному TCP-пакету протокол IP добавляет информацию, по которой можно определить адреса отправителя и получателя. На рис. 6 это представлено как помещение адреса на конверт. Для каждого поступающего пакета маршрутизатор, через который проходит какой-либо пакет, по данным IP-адреса определяет, кому из ближайших соседей необходимо переслать данный пакет, чтобы он быстрее оказался у получателя, - то есть принимает решение об оптимальном пути следования очередного пакета. При этом географически самый короткий путь не всегда оказывается оптимальным (быстрый канал на другой континент может быть лучше медленного в соседний город). Очевидно, что скорость и пути прохождения разных пакетов могут быть различными.

Таким образом, протокол IP осуществляет перемещение данных в сети, а протокол TCP обеспечивает надежную доставку данных, используя систему кодов, исправляющих ошибки. Причем два сетевых сервера могут одновременно передавать в обе стороны по одной линии множество TCP-пакетов от различных клиентов.

Некоторые начинающие пользователи думают, что связь по Интернету похожа на телефонную. Хочется еще раз подчеркнуть основное различие передачи информации по телефонной сети и по Интернету: когда вы звоните по телефону кому-нибудь в другой регион страны или даже на другой континент, телефонная система устанавливает канал между вашим телефоном и тем, на который вы звоните. Канал может состоять из десятков участков: медные провода, волоконно-оптические линии, беспроводные участки, спутниковая связь и т.д. Эти участки неизменны на протяжении всего сеанса связи. Это означает, что линия между вами и тем, кому вы звоните, постоянна в течение всего разговора, поэтому повреждения на любом участке данной линии, например обрыв проводов в бурю, способны прервать ваш разговор.

При этом, если соединение нормальное, значит выделенная вам часть сети для других уже не доступна. Речь идет о сети с коммутацией каналов. Интернет же является сетью с коммутацией пакетов, а это совсем другая история. Процесс пересылки электронной почты принципиально иной.

Как уже было отмечено, Интернет-данные в любой форме (будь то электронное послание, Web-страница или скачиваемый файл) путешествуют в виде группы пакетов. Каждый пакет посылается на место назначения по оптимальному из доступных путей. Поэтому даже если какой-то участок Сети окажется нарушенным, то это не повлияет на доставку пакета, который будет направлен по альтернативному пути. Таким образом, во время доставки данных нет необходимости в фиксированной линии связи между двумя пользователями. Принцип пакетной коммутации обеспечивает основное преимущество Интернета - надежность. Сеть может распределять нагрузку по различным участкам за тысячные доли секунды. Если какой-то участок оборудования сети поврежден, пакет может обойти это место и пройти по другому пути, обеспечив доставку всего послания .

Адресация в Интернете

ы уже упоминали IP-адрес, теперь расскажем о нем подробнее. Каждому компьютеру, подключенному к Интернету, присваивается идентификационный номер, который называется IP-адресом.

Но если вы осуществляете сеансовое подключение (то есть подключаетесь на время сеанса выхода в Интернет), то IP-адрес вам выделяется только на время этого сеанса. Присвоение адреса на время сеанса связи называется динамическим распределением IP-адресов. Оно удобно для ISP-провайдера, поскольку в тот период времени, пока вы не выходите в Интернет, IP-адрес, который вы получали, может быть выделен другому пользователю. Этот IP-адрес является уникальным только на время вашей сессии - в следующий раз, когда вы будете выходить в Интернет через своего провайдера, IP-адрес может быть другим. Таким образом, Интернет-провайдер должен иметь по одному IP-адресу на каждый обслуживаемый им модем, а не на каждого клиента, которых может быть намного больше.

IP-адрес имеет формат xxx.xxx.xxx.xxx, где xxx - числа от 0 до 255. Рассмотрим типичный IP-адрес: 193. 27.61.137.

Для облегчения запоминания IP-адрес обычно выражают рядом чисел в десятичной системе счисления, разделенных точками. Но компьютеры хранят его в бинарной форме. Например, тот же IP-адрес в двоичном коде будет выглядеть так:

11000001.00011011.00111101.10001001.

Четыре числа в IP-адресе называются октетами, поскольку в каждом из них при двоичном представлении имеется восемь разрядов: 4×8=32. Так как каждая из восьми позиций может иметь два различных состояния: 1 или 0, общий объем возможных комбинаций составляет 28, или 256, то есть каждый октет может принимать значения от 0 до 255. Комбинация четырех октетов дает 232 значений, то есть примерно 4,3 млрд. комбинаций, за исключением некоторых зарезервированных адресов.

Октеты служат не только для того, чтобы разделять числа, но и выполняют другие функции. Октеты можно распределить на две секции: Net и Host. Net-секция используется для того, чтобы определить сеть, к которой принадлежит компьютер. Host, который иногда называют узлом, определяет конкретный компьютер в сети.

Эта система аналогична системе, используемой в обычной почте, когда одна часть адреса определяет улицу, а вторая - конкретный дом на этой улице.

На ранней стадии своего развития Интернет состоял из небольшого количества компьютеров, объединенных модемами и телефонными линиями. Тогда пользователи могли установить соединение с компьютером, набрав цифровой адрес, например 163. 25.51.132. Это было удобно, пока сеть состояла из нескольких компьютеров. По мере увеличения их количества, учитывая тот факт, что текстовое имя всегда удобнее для запоминания, чем цифровое, постепенно цифровые имена стали заменять на текстовые.

Возникла проблема автоматизации данного процесса, и в 1983 году в Висконсинском университете США (University of Wisconsin) была создана так называемая DNS (Domain Name System)-система, которая автоматически устанавливала соответствие между текстовыми именами и IP-адресами. Вместо чисел была предложена ставшая сегодня для нас привычной запись типа http://www.myhobby.narod.ru/ .

Подобным образом осуществляется сортировка обычной почты. Люди привыкли ориентироваться по географическим адресам, например: «Москва, ул. Рылеева, д. 3, кв. 10», в то время как автомат на почте быстро сортирует почту по индексу.

Таким образом, при пересылке информации компьютеры используют цифровые адреса, люди - буквенные, а DNS-сервер служит своеобразным переводчиком.

Прежде чем переходить к описанию работы DNS-серверов, следует сказать несколько слов о структуре доменных имен.

Доменные имена

огда вы обращаетесь на Web или посылаете e-mail, вы используете доменное имя. Например, адрес http://www.microsoft.com/ содержит доменное имя microsoft.com. Аналогично e-mail-адрес [email protected] содержит доменное имя aha.ru.

В доменной системе имен реализуется принцип назначения имен с определением ответственности за их подмножество соответствующих сетевых групп.

И если каждая группа придерживается этого простого правила и всегда получает подтверждение, что имена, которые она присваивает, единственны среди множества ее непосредственных подчиненных, то никакие две системы, где бы те ни находились в сети Интернет, не смогут получить одинаковые имена.

Так же уникальны адреса, указываемые на конвертах при доставке писем обычной почтой. Таким образом, адрес на основе географических и административных названий однозначно определяет точку назначения.

Домены тоже имеют аналогичную иерархию. В именах домены отделяются друг от друга точками: companya.msk.ru, companyb.spb.ru. В имени может быть различное количество доменов, но обычно их не больше пяти. По мере движения по доменам в имени слева направо, количество имен, входящих в соответствующую группу, возрастает.

Каждый раз, когда вы используете доменное имя, вы также используете DNS-серверы для того, чтобы перевести буквенное доменное имя в IP-адрес на машинном языке.

В качестве примера давайте рассмотрим адрес http://www.pc.dpt1.company.msk.ru/ .

Первым в имени стоит название рабочей машины - реального компьютера с IP-адресом. Это имя создано и поддерживается группой dpt1. Группа входит в более крупное подразделение company, далее следует домен msk - он определяет имена московской части сети, а ru - российской.

Каждая страна имеет свой домен. Так au - соответствует Австралии, be - Бельгии и т.д. Это географические домены верхнего уровня.

Помимо географического признака используется тематический, в соответствии с которым существуют следующие доменные имена первого уровня:

  • com - обозначает коммерческие предприятия;
  • (edu) - образовательные;
  • Как работает DNS-сервер

    NS-сервер принимает запрос на конвертацию доменного имени в IP-адрес. При этом DNS-сервер выполняет следующие действия:

    • отвечает на запрос, выдав IP-адрес, поскольку уже знает IP-адрес запрашиваемого домена.
    • контактирует с другим DNS-сервером для того, чтобы найти IP-адрес запрошенного имени. Этот запрос может проходить по цепочке несколько раз.
    • выдает сообщение: «Я не знаю IP address домена, запрашиваемого вами, но вот IP address DNS-сервера, который знает больше меня»;
    • сообщает, что такой домен не существует.

    Представим, что вы набрали адрес http://www.pc.dpt1.company.com/ в вашем браузере, который имеет адрес в домене верхнего уровня COM (рис. 9). В простейшем варианте ваш браузер контактирует с DNS-сервером для того, чтобы получить IP-адрес искомого компьютера, и DNS-сервер возвращает искомый IP-адрес (рис. 10).

    На практике в Сети, где объединены миллионы компьютеров, найти DNS-сервер, который знает нужную вам информацию, - это целая проблема. Иными словами, если вы ищете какой-то компьютер в Сети, то прежде всего вам необходимо найти DNS-сервер, на котором хранится нужная вам информация. При этом в поиске информации может быть задействована целая цепочка серверов. Пояснить работу DNS-серверов можно на примере, показанном на рис. 11 .

    Предположим, что тот DNS-сервер, к которому вы обратились (на рис. 11 он обозначен как DNS1), не имеет нужной информации. DNS1 начнет поиск IP-адреса с обращения к одному из корневых DNS-серверов. Корневые DNS-серверы знают IP-адреса всех DNS-серверов, отвечающих за доменные имена верхнего уровня (COM, EDU, GOV, INT, MIL, NET, ORG и т.д.).

    Например, ваш сервер DNS1 может запросить адрес у корневого DNS-сервера. Если корневой сервер не знает данного адреса, возможно, он даст ответ: «Я не знаю IP-адреса для http://www.pc.dpt1.company.com/ , но могу предоставить IP-адрес COM DNS-сервера».

    После этого ваш DNS посылает запрос на COM DNS с просьбой сообщить искомый IP-адрес. Так происходит до тех пор, пока не найдется DNS-сервер, который выдаст нужную информацию.

    Одна из причин, по которой система работает надежно, - это ее избыточность. Существует множество DNS-серверов на каждом уровне, и поэтому, если один из них не может дать ответ, наверняка существует другой, на котором есть необходимая вам информация. Другая технология, которая делает поиск более быстрым, - это система кэширования. Как только DNS-сервер выполняет запрос, он кэширует полученный IP-адрес. Однажды сделав запрос на корневой DNS (root DNS) и получив адрес DNS-сервера, обслуживающего COM-домены, в следующий раз он уже не должен будет повторно обращаться с подобным запросом. Подобное кэширование происходит с каждым запросом, что постепенно оптимизирует скорость работы системы. Несмотря на то что пользователям работа DNS-сервера не видна, эти серверы каждый день выполняют миллиарды запросов, обеспечивая работу миллионов пользователей.

    КомпьютерПресс 5"2002

Предположим, что кто-то из наших друзей решил позвонить своей бабушке в Санкт-Петербург. Он поднимает телефонную трубку, набирает номер и ждет, когда бабушка ответит. Как только она берет трубку, между нею и нашим другом устанавливается прямая телефонная связь, которая поддерживается до тех пор, пока один из собеседников не положит трубку. Посторонний в их разговор вмешаться не может. Они болтают, пока не надоест, так что можно сказать на какое-то время линия принадлежит только человеку, живущему в Москве, и его петербургской бабушке.

В Internet дело обстоит иначе. Никто не занимает канал единолично, пусть даже ненадолго. По одному и тому же каналу движется вперемежку самая разная информация, которая передается в виде пакетов данных. В эти упаковки она «раскладывается» сразу при отправлении: все сообщении «разрезаются на кусочки» и так пересылаются получателю. По каналам Internet одновременно мчится множество таких пакетов, и всякий новый вливается в этот поток. В момент доставки адресату разрозненные фрагменты, словно детали головоломки, снова складываются в единое целое.

Если бы телефон работал по тому же принципу, что и Internet, наш друг и его бабушка замучились бы беседовать друг с другом. Друг произносил бы фразу, а то и пару слов, и долго ждал бы, пока его сообщение дойдет до бабушки. Ее ответ добирался бы до него с таким же запозданием. Конечно, обычный телефонный разговор протекает совсем не так: мы общаемся, как если бы собеседник был рядом с нами. И все же с помощью Internet можно звонить по телефону!

А пока продолжим о самом принципе передачи информации в Интернете. Пакет данных, который пересылается по Internet, может содержать не более 1500 знаков. Чтобы такой пакет не попал мимо цели, он содержит поле адреса, в котором указаны такие необходимые сведения, как имя пакета, его позиция в блоке передаваемых данных и инструкции о последующих действиях. Благодаря наличию этой информации из поступивших к получателю пакетов данных и складывается сообщение. Занимаются этим так называемые протоколы.
Главный протокол в Internet - TCP/IP.

Вообще говоря, это два разных протокола. С одной стороны, это межсетевой IP (Internet Protocol), задача которого - правильно адресовать пакет данных. Межсетевой протокол представляет собой что-то вроде почтового конверта, на котором указаны адреса получателя и отправителя. Когда пакет попадает в сеть, перед каждым очередным ответвлением информационной магистрали (маршрута передачи данных) он останавливается. Система изучает его адрес, после чего пакет продолжает движение. Путь его не всегда прямой: он направляется всякий раз туда, где нет «пробок». Поэтому сообщение, посланное, скажем, из Парижа в Берлин, может добираться через Японию или США. В Internet отсутствует понятие «занято». Если линия загружена, сообщение мчится окольным путем. В этом заключается огромное преимущество Internet перед другими средствами связи. Даже если где-нибудь на линии случится обрыв, информация все равно дойдет до адресата.

Другую функцию выполняет TCP (Transmission Control Protokol). Этот протокол используется для «упаковки» данных в пакеты. Как только все они дойдут до получателя, протокол TCP опять собирает из них сообщение. Сделать это помогают особые пометки, которыми снабжены пакеты данных. Это сведения о размере общего массива данных, количестве пакетов и о последовательности, в которой их предстоит собирать.

Протокол TCP/IP помогает передавать данные. Он налаживает обмен информацией между различными компьютерными системами. Бывает и так, что замкнутая локальная сеть не работает с протоколом TCP/IP. Однако и из нее можно выйти в Internet: через шлюз (gateway) - специальный компьютер, который обеспечивает обмен данными между разными сетями. Такой шлюз переводит информацию с языка протокола TCP/IP на язык локальной сети, после чего передает ее соответствующему компьютеру.

Например, если вы хотите послать по Internet электронное письмо пользователю онлайновой службы CompuServe, ваше сообщение неминуемо пройдет через шлюз этой сети. Он придаст вашему посланию формат, принятый в сети CompuServe, и ваш адресат без труда прочтет его. Точно так же он сам может отправить послание в локальную сеть, использующую другой протокол.

В России многопротокольный доступ к сети впервые предложила компания Совам Телепорт.
В наше время многие крупные фирмы заводят собственные локальные сети, чтобы обеспечить связь между сотрудниками на рабочих местах и различными филиалами данного предприятия. Их называют корпоративные сети, или intranet-сети.

Создаются они в соответствии с техническими стандартами всемирной сети, и компьютеры, подключенные к таким внутренним сетям, имеют возможность доступа в Internet.

Некоторые коммерческие онлайновые службы - например, Microsoft Network (MSN) - тоже используют технологию Internet, будучи тем самым составной частью всемирной компьютерной сети.

3.1 Виды связи и режимы работы сетей передачи сообщений

Первоначальными видами сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений - телевидение, текста - телеграф (телетайп), данных - вычислительные сети. Передача документов (текста) может быть кодовой или факсимильной. Для передачи в единой среде звука, изображений и данных применяют сети, называемые сетями интегрального обслуживания.

Кодовая передача сообщений между накопителями, находящимися в узлах информационной сети, называется телетекстом (в отличие от телекса - телетайпной связи), а факсимильная связь называется телефаксом. Виды телетекса: электронная почта (E-mail) - обмен сообщениями между двумя пользователями сети, обмен файлами, "доска объявлений" и телеконференции - широковещательная передача сообщений.

Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы on-line ("на линии"). При существенных задержках с запоминанием информации в промежуточных узлах имеем режим off-line ("вне линии").

Связь может быть односторонней (симплексной), с попеременной передачей информации в обоих направлениях (полудуплексной) или одновременной в обоих направлениях (дуплексной).

3.2 Протоколы

Протоколы - это набор семантических и синтаксических правил, определяющий поведение функциональных блоков сети при передаче данных. Другими словами, протокол - это совокупность соглашений относительно способа представления данных, обеспечивающего их передачу в нужных направлениях и правильную интерпретацию данных всеми участниками процесса информационного обмена.

Поскольку информационный обмен - процесс многофункциональный, то протоколы делятся на уровни. К каждому уровню относится группа родственных функций. Для правильного взаимодействия узлов различных вычислительных сетей их архитектура должна быть открытой. Этим целям служат унификация и стандартизация в области телекоммуникаций и вычислительных сетей.

Унификация и стандартизация протоколов выполняются рядом международных организаций, что наряду с разнообразием типов сетей породило большое число различных протоколов. Наиболее широко распространенными являются протоколы, разработанные для сети ARPANET и применяемые в глобальной сети Internet, протоколы открытых систем Международной организации по стандартизации (ISO -Intrenational Standard Organization), протоколы Международного телекоммуникационного союза (International Telecommunication Union -ITU, ранее называвшегося CCITT) и протоколы Института инженеров по электротехнике и электронике (IEEE - Institute of Electrical and Electronics Engineers). Протоколы сети Internet объединяют под названием TCP/IP. Протоколы ISO являются семиуровневыми и известны как протоколы базовой эталонной модели взаимосвязи открытых систем - ЭМВОС).

3.3 Эталонная модель взаимосвязи открытых систем (ЭМВОС)

Базовая ЭМВОС - это модель, принятая ISO для описания общих принципов взаимодействия информационных систем. ЭМВОС признана всеми международными организациями как основа для стандартизации протоколов информационных сетей.

В ЭМВОС информационная сеть рассматривается как совокупность функций, которые делятся на группы, называемые уровнями. Разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.

ЭМВОС содержит семь уровней. Ниже приведены их номера, названия и выполняемые функции.

7-й уровень - прикладной (Application): включает средства управления прикладными процессами; эти процессы могут объединяться для выполнения поставленных заданий, обмениваться между собой данными. Другими словами, на этом уровне определяются и оформляются в блоки те данные, которые подлежат передаче по сети. Уровень включает, например, такие средства для взаимодействия прикладных программ, как прием и хранение пакетов в "почтовых ящиках" (mail-box).

6-й уровень - представительный (Presentation): реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из кода ЕBCDIC в ASCII и т.п.

5-й уровень - сеансовый (Session): предназначен для организации и синхронизации диалога, ведущегося объектами (станциями) cети. На этом уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответаами взаимодействующих партнеров.

4-й уровень - транспортный (Transport): предназначен для управления сквозными каналами в сети передачи данных; на этом уровне обеспечивается связь между оконечными пунктами (в отличие от следующего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка-разборка пакетов), обнаружение и устранение ошибок в передаче данных, реализация заказанного уровня услуг (например, заказанной скорости и надежности передачи).

3-й уровень - сетевой (Network): на этом уровне происходит формирование пакетов по правилам тех промежуточных сетей, через которые проходит исходный пакет, и маршрутизация пакетов, т.е. определение и реализация маршрутов, по которым передаются пакеты. Другими словами, маршрутизация сводится к образованию логических каналов. Логическим каналом называется виртуальное соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала необязательно соответствие некоего физического соединения линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения. Еще одной важной функцией сетевого уровня после маршрутизации является контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети.

2-й уровень - канальный (Link, уровень звена данных): предоставляет услуги по обмену данными между логическими объектами предыдущего сетевого уровня и выполняет функции, связанные с формированием и передачей кадров, обнаружением и исправлением ошибок, возникающих на следующем, физическом уровне. Кадром называется пакет канального уровня, поскольку пакет на предыдущих уровнях может состоять из одного или многих кадров.

1-й уровень - физический (Physical): предоставляет механические, электрические, функциональные и процедурные средства для установления, поддержания и разъединения логических соединений между логическими объектами канального уровня; реализует функции передачи битов данных через физические среды. Именно на физическом уровне осуществляются представление информации в виде электрических или оптических сигналов, преобразования формы сигналов, выбор параметров физических сред передачи данных.

В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда соответственно в сети имеется лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней. В то же время сложность функций канального уровня делает целесообразным его разделение в ЛВС на два подуровня: управление доступом к каналу (МАС - Medium Access Control) и управление логическим каналом (LLC - Logical Link Control). К подуровню LLC в отличие от подуровня МАС относится часть функций канального уровня, не связанных с особенностями передающей среды.

Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень. Сегментом обычно называют пакет транспортного уровня. Сетевой уровень организует передачу данных через промежуточные сети. Для этого сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т.е. происходит инкапсуляция). При передаче между узлами промежуточной ЛВС требуется инкапсуляция пакетов в кадры с возможной разбивкой пакета. Приемник декапсулирует сегменты и восстанавливает исходное сообщение.

Основные элементы сети передачи данных (СПД)

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.

Линия передачи данных - средства, которые используются в информационных сетях для распространения сигналов в нужном направлении. Примерами линий передачи данных являются коаксиальный кабель, витая пара проводов, световод.

Характеристиками линий передачи данных являются зависимости затухания сигнала от частоты и расстояния. Затухание принято оценивать в децибелах, 1 дБ = 10*lg(P1/P2), где Р1 и Р2 - мощности сигнала на входе и выходе линии соответственно.

При заданной длине можно говорить о полосе пропускания (полосе частот) линии. Полоса пропускания связана со скоростью передачи информации. Различают бодовую (модуляционную) и информационную скорости. Бодовая скорость измеряется в бодах, т.е. числом изменений дискретного сигнала в единицу времени, а информационная - числом битов информации, переданных в единицу времени. Именно бодовая скорость определяется полосой пропускания линии.

Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций модулируемого параметра несущей равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с.

Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона (предполагается, что одно изменение величины сигнала приходится на log 2 k бит, где k - число возможных дискретных значений сигнала)

V = 2*F*log 2 k бит/с,

так как V = log 2 k/t, где t - длительность переходных процессов, приблизительно равная 3*Т В, а Т В = 1/(2*p *F), k = 1+A, где A - отношение сигнал/помеха.

Канал (канал связи) - средства односторонней передачи данных. Примером канала может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени или TDM), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM - Frequency Division Method), при котором каналу выделяется некоторая полоса частот.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру конца данных (узел) и линию передачи данных.

Составные элементы СПД. Это совокупность аппаратных средств для представления информации в закодированной форме и преобразования ее с целью эффективного распространения сиг­налов по физической среде связи (ФСС) (каналу связи). В соот­ветствии с приведенным определением канал передачи данных можно представить состоящим из двух основных частей: аппаратуры передачи данных и физической среды связи, через которую передается информация. Варианты структур канала передачи данных показаны на рис. 4, а-в.

Сетевой тракт передачи данных. Это совокупность парал­лельно включенных каналов связи, организованных в линии раз­личного типа с помощью аппаратуры частотного или временного уплотнения, устройств преобразования сигналов, модемов и уст­ройств повышения достоверности передачи информации.

Функциональное назначение каждой из указанных частей ка­нала и тракта передачи данных определяет их техническое испол­нение. Конструктивно аппаратура передачи данных (АПД) соединяется с линией связи через специальные аппаратные средства (интерфейсы связи), которые выполняются на основе стандартных решений, требований и рекомендаций. Международные стандарты, опреде­ляющие соединение АПД с физической средой, называют рекомендациями серии Х (MKKТT), в частности Х.21 и Х.21 бис. В нашей стране интерфейсы связи называются СТЫКами, обозначаются заглавными буквами С с номером, стоящим справа: С1, С2, СЗ, С4. СТЫК С1 определяет структуру, состав и логику взаимодействия соединительных цепей между АПД и физической средой связи ФСС (рис. 1.20, а). Он также устанавливает параметры передачи (скорости, тип капала связи и др.) СТЫК С2 определяет параметры цепей обмена данными между оконечным оборудованием данных ООД и АПД при последовательном вводе/выводе данных той или иной абонентской системой (АС). В абонентской системе (АС) обмен и передача между отдельными устройствами (оконечными абонентами) (ОА) осуществляется па­раллельным образом, т. е. сигналы передаются одновременно по целой группе соединительных линий (цепей), на которые также имеются стандартные интерфейсы (стандарт ИРПР-интерфейс-радиальный параллельный). При подключении абонентской си­стемы к каналу передачи данных, во-первых, необходимо обеспе­чить сопряжение, которое выполняется с помощью адаптеров (А) через ИРПР, а во-вторых, сопряжение адаптера с каналом передачи данных и при необходимости в случае передачи на значительное


расстояние переход от параллельного способа обмена к последовательному через СТЫК С2.

Рисунок 4 - Структура канала передачи данных

Работу канала передачи данных можно организовать различ­ным образом: передавать данные только в одном направлении (симплексный СДД) (рис. 4, в), менять направления передачи (полудуплексный СПД) (рис. 4, б) и, используя две линии, ввести одновременную передачу в двух направлениях (дуплексный СПД), рис. 4. а.

Как видно из рис. 4, а-в основными компонентами канала передачи данных являются: адресат-получатель 0,4; с устройством приема ПР информации и отправитель ОЛ, с передатчиком ПК, кодер К 0 и декодер ДК. В схеме можно выделить так называемый непрерывный канал связи НКС, в который входят линии связи, приемный ДМ и передающий М модемы.

Непрерывный канал характеризуется полосой пропускания , уровнем шумов Р ш, затуханием и другими параметрами. При подключении к передатчику кодера, декодера и устройств защиты от ошибок, на основе непрерывного канала, образуется дискретный канал (ДКС).

Для установления физической и логической связей источника с системой передачи информации необходимо организовать сопряжение, которое осуществляется по принципу согласования скорости выбора сообщений источником и скорости их передачи по каналу связи. При этом главным согласующим принципом источника сообщений с каналом связи (это в равной мере относится к приемнику и абоненту) является согласование всех эле­ментов системы передачи информации по применяемым кодам и способам кодирования.

Под кодированием в общем случае понимается процесс представления сообщений с помощью специальных элементов в соответствии с набором правил, позволяющих эффективно реали­зовать передачу, обработку информации и другие информацион­ные процессы.

Как известно из теории информации, для непрерывного канала важнейшей характеристикой является его пропускная способ­ность, которую можно подсчитать следующим образом:

где -полоса пропускания канала;

Р с, Р ш -мощности сигнала и шума.

Из формулы следует, что имеют место два пути увеличения пропускной способности каналов: увеличение полосы пропускания канала связи, увеличение соотношения сигнал/шум.

В ИС применяют методы, реализующие каждый из указанных путей. В частности, если требуется обеспечить высокие скорости передачи сообщений, в качестве непрерывного канала применяют высокочастотные коаксиальные кабели или оптико-волоконные линии, имеющие сравнительно низкий уровень шумов и позволяю­щие передавать большое число импульсных посылок в единицу времени.

В непрерывном канале также для эффективного протекания / процессов передачи информации производятся модуляция, демодуляция, фильтрация и другие преобразования сигналов.

Непрерывный канал не позволяет обеспечить возросшие требования к процессам передачи информации, предъявляемые к информационным сетям. Решение проблемы – в применении дискретной передачи информации и ее кодирование помехоустойчивости.

По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные. В свою очередь, медные каналы могут быть представлены коаксиальными кабелями и витыми парами, а беспроводные - радио- и инфракрасными каналами.

Передача данных - процесс переноса данных в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу. Словари упоминают заимствование (1640-е) учеными кругами латинского слова datum, означающего «вещь», «данность». Философия обосновывает связь понятий информации, знания, данных, свободы, приводит примеры. Высота горы преимущественно выступает данными. Параметр измеряют альтиметром, заполняют базы. Полученная информация, приняв конкретный облик, украшает книгу, изучаемую альпинистом. Бывалый горец придумывает лучший способ покорить вершину. Понимание особенностей процесса уже становится знанием.

Немедля появляется свобода выбора. Альпинист волен решать, принимая ответственность. Имеются группы, не вернувшиеся назад.

Виды данных

Исторически информацию представляли множеством способом. Оставим историкам иероглифы папирусов, разберем современные методики. Наибольший отпечаток наложило развитие электричества. Научись человек передаче мысли, символика вышла бы иной…

Аналоговый сигнал

Первыми попытками измерить аналоговые величины назовем опыты Вольты, измерявшего напряжение, ток. Следом сопротивление проводника сумел оценить Ом, Георг Ом. Каждый раз использовались аналоговые величины. Представление характеристик объекта в виде тока, напряжения дало мощный толчок развития современному миру. Электронно-лучевой кинескоп яркостью пикселей трех цветов отображает достаточно наглядную картинку.

Причины ухода от аналогового сигнала выявила Вторая мировая война. Система Зеленый шершень умела отлично шифровать информацию. 6-уровневый сигнал сложно назвать цифровым, однако намечается явный уклон. Исторически первой попыткой передачи бинарного кода назовем опыты Шиллинга 1832 года с телеграфом. Стремясь снизить количество соединяющих абонентов проводов, дипломат припомнил предложенные священниками методики двоичного счисления. Однако внедрение цифровой передачи потребовало от человечества пройти путь свыше полутора столетий.

Двоичный цифровой код

Двоичное счисление общеизвестно. Аналоговую величину представляют дискретным числом, затем производят кодирование. Полученный набор нулей, единиц обычно разбивают словами длиной 8 бит. Так, например, первые операционные системы Windows были 16-битными, графический модуль процессора обрабатывал числа с плавающей запятой разрядностью повыше. Еще более длинные слова используют специализированные вычислители графических карт. Специфика системы определяет конкретный способ представления информации.

Передача данных позволяет человечеству идти вперед быстрее. Люди обладают неодинаковыми способностями. Необязательно лучший сборщик, хранитель информации сможет извлечь выгоду (для себя, планеты, города…). Разумнее передать. Современный мир называют эпохой цифровой революции. Исторически оказалось, что двоичные данные передавать проще, появляется набор специфических возможностей:

  1. Исправление ошибок.
  2. Шифрование.
  3. Упрощение физических линий.
  4. Более эффективное использование спектра, снижение мощности передатчика, удельной плотности потока энергии.
  5. Распознавание ошибок (EDC, 1951).
  6. Возможность точного повтора, воспроизведения.

Вторая половина XX века дала сотни методик оцифровки аналоговых объектов. Главным признаком двоичного сигнала является дискретность. Аналоговую величину доподлинно передать код бессилен. Однако шаг дискретизации стал столь малым, что погрешностью пренебрегают. Яркий пример – изображения формата Full HD. Большое разрешение экрана гораздо лучше передает мелкие нюансы объекта. На некотором этапе разрешение цифровой техники обгоняет физиологические возможности человеческого зрения.

Значения термина

  1. Передача сведений.
  2. Компьютерная программа для Windows Phone, обеспечивающая копирование контактов меж мобильными устройствами.
  3. Научно-популярная программа с Марией Бачениной.

Этиология

Англичанами принято употреблять множественное число – data. Славянофилов просим избегнуть упреков. Современная наука развита Европой – наследницей Римской империи. Вопрос намеренного уничтожения отечественной истории обойдем, оставив прения историкам. Некоторые эксперты возводят этимологию к древнему индийскому слову dati (дар). Даль называет данными бесспорные, очевидные, известные факты произвольного толка.

Это интересно! Литературный английский язык (газета Нью-Йорк таймс) слово data лишает числа. Употребляют как придется: множественное, единственное. Учебники чаще проводят жесткое деление. Единственное число – datum. Отдельный вопрос касается артикля, здесь обсуждаться не будет. Эксперты склонны считать существительное «массовым».

Идея открытости

Идея свободного доступа к информации выдвинута отцом социологии, Робертом Кингом Мертоном, наблюдавшим Вторую мировую войну. Начиная 1946 годом, подразумевает передачу, хранение компьютерной информации. 1954 добавил возможность обработки. В декабре 2007 года желающие обсудить проблему собрались (Себастопол, Калифорния) и осмыслили программное обеспечение с открытым кодом, интернет, потенциал концепции массового доступа. Обама принял Меморандум о прозрачности и открытости действий правительства.

Осознание человечеством реального потенциала цивилизации сопровождается призывами совместно решать проблемы. Концепция открытости данных широко обсуждается документом (1995) Американского научного агентства. Текст затрагивает геофизику и экологию. Общеизвестен пример корпорации ДюПонт, использовавший некоторые спорные технологии производства Тефлона.

Термины

Термин передача данных чаще касается цифровой информации, включая преобразованный аналоговый сигнал. Наука смотрит шире. Данными именуют любые качественные, количественные описания объекта. Эпичным примером считают сведения, составляемые антропологами касательно редких народностей планеты. Информация широко собирается организациями: продажи, преступность, безработица, грамотность.

Передача информации – цифровой поток бит.

Метаданные – более высокий уровень данных, описывающих другие данные.

Данные измеряют, собирают, передают, анализируют, представляют графиками, таблицами, изображениями, цифрами. Программистам известны так называемые рядовые файлы, лишенные форматирования. Сбойный раздел жесткого диска получает метку RAW. Форматирование упрощает передачу, восприятие сведений. Процесс оформления касается визуального, логического представления. Иногда информацию кодируют, обеспечивая защиту, восстановление сбойных участков.

Формат – способ представления информации.

Протокол – набор соглашений интерфейса, определяющий порядок обмена информацией.

Каналы (способы)

Информация, распространяясь, преодолевает среду:

  • Медный кабель: RS-232 (1969), FireWire (1995), USB (1996).
  • Оптическое волокно.
  • Эфир (беспроводная передача).
  • Шины компьютера.

Специфика среды накладывает особенности. Немногим известно, что электрический ток разносится также электромагнитной волной. Проводимость воздуха намного ниже, что накладывает специфику. Разница нивелируется ионизацией – явлением, знакомым сварщикам. Процессы, сопровождающие движение электромагнитной волны, лишены научного объяснения. Физики просто констатируют факт, описывая явление набором сведений.

Долгое время разные частоты считали явлениями несвязными: свет, тепло, электричество, магнетизм. Важно понять: набор сред рожден эволюцией техники. Наверняка откроют иные методы передачи данных. Реализации сред различны, набор стандартов определен спецификой. Локальные соединения часто пользуются технологией WiFi, опирающейся на протокол канального уровня IEEE 802.11. Сотовые операторы применяют совершенно иные – GPS, LTE. Причем мобильные сети активно начинают внедрять IP, замыкая круг, унифицируя стиль использования цифрового оборудования.

Зачем много протоколов? Особенности реализации передачи данных через WiFi бессильны покрыть значительные расстояния. Лимитированы мощности передатчиков, структуры пакетов иные. Bluetooth вовсе ограничивает основные возможности передачей пары файлов с компьютера на телефон.

Форматирование

Физики быстро убедились: напрямую информация передается средой плохо. Медный провод может нести речь, однако эфир быстро убивает низкочастотные колебания. Попов первым догадался модулировать несущую полезной информацией – азбукой Морзе. Смысл включает изменение амплитуды радиоволны согласно закону сообщения так, чтобы принимающий абонент мог послание извлечь, воспроизвести.

Развивающееся вещание вызвало необходимость совершенствования методик оснащения несущей волны полезной информацией. В поздние 20-е годы Армстронг предложил слегка варьировать частоту, закладывая фундамент сообщения. Новый тип модуляции улучшил качество звука, успешно противостоя помехам. Меломаны немедля оценили новинку.

Военная система Зеленый шершень применяла дискретную методику частотной манипуляции – мгновенная смена частоты согласно закону передаваемого сообщения. Воющие стороны оценили преимущества связи. Внедрению мешали громадные размеры оборудования (1000 тонн). Изобретение транзисторов изменило ситуацию. Передача данных становилось цифровой.

Основу сетей заложил американский ARPANET. С ПК на ПК стали передавать пакеты. Тогда в сети начали применяться первые цифровые протоколы. Сегодня IP захватывает сегмент мобильной связи. Телефоны получают собственные адреса.

Слои протоколов

Передача цифровых данных модемом реализована в 1940 году. Сети появились 25 лет спустя.

Усложняющиеся системы связи потребовали введения новых методик описания процесса взаимодействия компьютерных систем. Концептуальная модель OSI вводит понятие протокольных (абстрактных, реально не существующих) слоев. Структура создана усилиями инженеров Международной организации по стандартизации (ISO), регламентирована стандартом ISO/IEC 7498-1. Параллельную работу вел французский комитет CCITT. В 1983 году разработанные документы объединили, получив модель протокольных слоев.

Концепция 7-слойной структуры представлена работами Чарльза Бэчмана. Модель OSI включает опыт разработки АRPANET, EIN, NPLNet, CYCLADES. Линейка полученных слоев взаимодействует по вертикали с соседями: верхний использует возможности нижнего.

Важно! Каждому уровню OSI соответствует набор протоколов, определяемый используемой системой.

В компьютерных линиях совокупность протоколов подразделяют на слои. Бывают:

  1. Физический (биты): USB, RS-232, 8P8C.
  2. Канальный (кадры): PPP (включая PPPoE, PPPoA), IEEE 802.22, Ethernet, DSL, ARP, LP2P. Устаревшие: Token Ring, FDDI, ARCNET.
  3. Сетевой (паеты): IP, AppleTalk.
  4. Транспортный (датаграммы, сегменты): TCP, UDP, PORTS, SCTP.
  5. Сеансовый: RPC, PAP.
  6. Представительский: ASCII, JPEG, EBCDIC.
  7. Прикладной: HTTP, FTP, DHCP, SNMP, RDP, SMTP.

Физический слой

Зачем разработчикам сто стандартов? Многие документы появились эволюционно, согласно возрастающим требованиям. Физический слой реализуют набором коннекторов, проводов, интерфейсов. Например, экранированная витая пара способна передавать высокие частоты, делая возможным реализацию протоколов битрейтом 100 Мбис/с. Оптоволокно пропускает свет, производится дальнейшее расширение спектра, возникают гигабитные сети.

Физический слой заведует схемами цифровой модуляции, физическим кодированием (формированием несущей, закладкой информации), опережающей коррекцией ошибок, синхронизацией, мультиплексированием каналов, выравниванием сигнала.

Канальный слой

Каждый порт управляется собственными машинными командами. Канальный слой показывает, как реализовать передачу форматированной информации, используя имеющееся железо. Например, PPPoЕ содержит рекомендации организации протокола PPP средствами сетей Ethernet, используемый традиционно порт – 8P8C. Эволюционной борьбой «эфирная сеть» смогла подавить соперников. Изобретатель концепции, основатель компании 3СОМ, Роберт Меткалф, сумел убедить несколько крупных производителей (Интел, DEC, Ксерокс) объединить усилия.

Попутно совершенствовались каналы: коаксиальный кабель → витая пара → оптическое волокно. Изменения преследовали цели:

  • удешевления;
  • повышения надежности;
  • внедрения дуплексного режима;
  • повышения помехоустойчивости;
  • гальванической развязки;
  • питания устройств посредством сетевого кабеля.

Оптический кабель повысил длину сегмента меж регенераторами сигнала. Канальный протокол больше описывает структуру сети, включая методы кодирования, битрейт, количество узлов, режим функционирования. Уровень вводит понятие кадра, реализует схемы расшифровки адреса MAC, детектирует ошибки, повторно отправляет запрос, контролирует частоту.

Рассказать друзьям