Количественные характеристики надежности. Частота отказов

💖 Нравится? Поделись с друзьями ссылкой

Интенсивность отказов - отношение плотности распределения вероятности отказов к вероятности безотказной работы объекта:

где - плотность вероятности отказов и - вероятность безотказной работы .

Простыми словами, интенсивность отказов выражает шанс отказать в ближайший момент времени объекта (например, прибора), который уже проработал без отказов определённое время.

Статистически интенсивность отказов есть отношение числа отказавших образцов техники в единицу времени к среднему числу образцов, исправно работающих на интервале :

Где - среднее число исправно работающих образцов

на интервале .

Соотношение (1) для малых следует непосредственно из формулы вероятности безотказной работы (3)

и формулы плотности распределения безотказной работы (частоты отказов) (4)

На основе определения интенсивности отказов (1) имеет место равенство:

Интегрируя (5), получим:

Интенсивность отказов является основным показателем надёжности элементов сложных систем. Это объясняется следующими обстоятельствами:

  • надёжность многих элементов можно оценить одним числом, т.к. интенсивность отказа элементов - величина постоянная;
  • интенсивность отказов нетрудно получить экспериментально.

Опыт эксплуатации сложных систем показывает, что изменение интенсивности отказов большинства количества объектов описывается - образной кривой.

Время можно условно разделить на три характерных участка: 1. Период приработки. 2. Период нормальной эксплуатации. 3. Период старения объекта.

Период приработки объекта имеет повышенную интенсивность отказов, вызванную приработочными отказами, обусловленными дефектами производства, монтажа и наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем. В период нормальной эксплуатации интенсивность отказов практически остаётся постоянной, при этом отказы носят слуайный характер и появляются внезапно, прежде всего из-за случайных изменений нагрузки, несоблюдения условий эксплуатации, неблагоприятных внешних факторов и т.п. Именно этот период соответствует основному времени эксплуатации объекта. Возрастание интенсивности отказов относится к периоду старения объекта и вызвано увеличением числа отказов из-за износа, старения и других причин, связанных с длительной эксплуатацией. То есть вероятность отказа элемента, дожившего для момента в некотором последующем промежутке времени зависит от значений только на этом промежутке, а следовательно интенсивность отказов - локальный показатель надёжности элемента на данном промежутке времени.

Лекция № 3

Тема № 1. Показатели надежности ЭМС

Показатели надежности характеризуют такие важнейшие свойства систем, как безотказность , живучесть , отказоустойчивость , ремонтопригодность , сохраняемость , долговечность и являются количественной оценкой их технического состояния и среды, в которой они функционируют и эксплуатируются. Оценка показателей надежности сложных технических систем на различных этапах жизненного цикла используется для выбора структуры системы из множества альтернативных вариантов, назначения гарантийных сроков эксплуатации, выбора стратегии и тактики технического обслуживания, анализа последствий отказов элементов системы.

Аналитические методы оценки показателей надежности сложных технических систем управления и принятия решения базируются на положениях теории вероятности. В силу вероятностной природы отказов оценка показателей основана на использовании методов математической статистики. При этом статистический анализ проводится, как правило, в условиях априорной неопределенности относительно законов распределения случайных значений наработки системы, а также по выборкам ограниченного объема, содержащих данные о моментах отказа элементов системы при из испытаниях или в условиях эксплуатации.

Вероятность безотказной работы (ВБР) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени не произойдет ни одного отказа. Вероятность P (t ) – функция, убывающая см. рис.1 причем,

ВБР по статистическим данным об отказах оценивается выражением

(1)

где – статистическая оценка ВБР; – число изделий в начале испытаний, при большом числе изделий статистическая оценка практически совпадает с вероятностью P (t ) ; –число отказавших изделий за время t .

Рисунок 1. Кривые вероятности безотказной работы и вероятности отказов

Вероятность отказа Q ( t ) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени произойдет хотя бы один отказ. Отказ и безотказная работа – события противоположенные и несовместимые

(2)

Частота отказов a ( t ) – есть отношение отказавших изделий в единицу времени к первоначальному числу испытываемых изделий

(3)

где –число отказавших изделий в интервале времени Dt .

Частота отказов или плотность вероятности отказов может быть определена как производная по времени вероятности отказов

Знак (-) характеризует скорость снижения надежности во времени.

Средняя наработка до отказа – среднее значение продолжительности работы неремонтируемого устройства до первого отказа:

где – продолжительность работы (наработка) до отказа i -гo устройства; – число наблюдаемых устройств.

Пример. Наблюдения за эксплуатацией 10 электродвигателей выявили, что первый проработал до отказа 800 ч, второй – 1200 и далее соответственно; 900, 1400, 700, 950, 750, 1300, 850 и 1500 ч. Определить наработку двигателей до внезапного отказа,

Решение . По (5) имеем

Интенсивность отказов l ( t ) – условная плотность вероятности возникновения отказа, которая определяется как отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени

, (6)

где – число устройств, отказавших в период времени ; – число среднее число устройств, исправно работающих в период наблюдения; – период наблюдения.

Вероятность безотказной работы Р(t) через выразится

. (8)

Пример 1. При эксплуатации 100 трансформаторов в течение 10 лет произошло два отказа, причём каждый раз отказывал новый трансформатор. Определить интенсивность отказов трансформатора за период наблюдения.

Решение. По (6) имеем отк./год.

Пример2 . Изменение числа отказов BJI из-за производственной деятельности сторонних организаций по месяцам года представлено следующим образом:

Определить среднемесячную интенсивность отказов.

Решение. ; отк./ мес.

Ожидаемая расчетная интенсивность l = 7,0.

Средняя наработка на отказ – среднее значение наработки ремонтируемого устройства между отказами, определяемое как среднее арифметическое:

, (9)

где – наработка до первого, второго, n -го отказа; n – число отказов от момента начала эксплуатации до окончания наблюдения. Наработка на отказ, или среднее время безотказной работы, есть математическое ожидание :

. (10)

Пример. Трансформатор отказал, проработав около года. После устранения причины отказа он проработал еще три года и опять вышел из строя. Определить среднюю наработку трансформатора на отказ.

Решение . По (1.7) вычислим года.

Параметр потока отказов – среднее количество отказов ремонтируемого устройства в единицу времени, взятое для рассматриваемого момента времени:

(11)

где – число отказов i -го устройства по состоянию на рассматриваемые моменты времени – и t соответственно; N – число устройств; – рассматриваемый период работы, причём .

Отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки

Пример . Электротехническое устройство состоит из трех элементов. В течение первого года эксплуатации в первом элементе произошло два отказа, во втором – один, в третьем отказов не было. Определить параметр потока отказов.

Решение

Откуда по (1.8)

Среднее значение ресурса рассчитывают по данным эксплуатации или испытаний с использованием уже известного выражения для наработки:

.

Среднее время восстановления – среднее время вынужденного или регламентированного простоя, вызванного обнаружением и устранением одного отказа:

где – порядковый номер отказа; – среднее время обнаружения и устранения отказа.

Коэффициент готовности – вероятность того, что оборудование будет работоспособно в произвольно выбранный момент времени в промежутках между выполнениями планового технического обслуживания. При экспоненциальном законе распределения времени безотказной работы и времени восстановления коэффициент готовности

.

Коэффициент вынужденного простоя – это отношение времени вынужденного простоя к сумме времени исправной работы и вынужденных простоев.

Коэффициент технического использования – это отношение наработки оборудования в единицах времени за некоторый период эксплуатации к сумме этой наработки и времени всех простоев, вызванных, техническим обслуживанием и ремонтами за тот же период эксплуатации:

.

Кроме того [ГОСТ 27.002-83] определяет показатели долговечности , в терминах которых следует указывать вид действий после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т.д.). Если предельное состояние обуславливает окончательное снятие объекта с эксплуатации, то показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы).

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный ресурс – наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный ресурс – суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Показатели ремонтопригодности и сохраняемости определяются следующим образом.

Вероятность восстановления работоспособного состояния – это вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного.

Среднее время восстановления работоспособного состо яния – это математическое ожидание времени восстановления работоспособного состояния.

Средний срок сохраняемости – это математическое ожидание срока сохраняемости.

Гамма-процентный срок сохраняемости – это срок сохраняемости, достигаемый объектом с заданной вероятностью , выраженной в процентах.

где - время исправной работы между и м отказами объекта; - число отказов объекта.

При достаточно большом числе отказов стремится к среднему времени между двумя соседними отказами. Если проводится испытание нескольких однотипных объектов, то среднее время между отказами определяют из выражения

число объектов. (1.11)

Интенсивность отказов – это отношение числа отказавших объектов в единицу времени к среднему числу объектов, продолжающих исправно работать в данный интервал времени:

(1.12)

здесь число отказавших объектов за промежуток времени от до , а где число исправно работающих объектов в начале интервала времени ; число исправно работающих объектов в конце интервала времени

В теории надёжности принята модель интенсивности отказов объекта, характеризуемая приведённой ниже кривой интенсивности отказов объекта в процессе эксплуатации.

Рисунок 1.3 - Модель интенсивности отказов объекта

Параметр потока отказов – это отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки. Этот показатель используют для оценки безотказности восстанавливаемых объектов в процессе эксплуатации: в начальный период времени объект работает до отказа; после отказа происходит восстановление объекта, и объект вновь работает до отказа и так далее. При этом полагают, что восстановление объекта происходит мгновенно. Для таких объектов моменты отказов на оси суммарной наработки (оси времени) образуют поток отказов. В качестве характеристики потока отказов используют - «ведущую функцию» данного потока – математическое ожидание числа отказов за время t : (1.13)

Параметр потока отказов характеризует среднее число отказов, ожидаемых на малом интервале времени

Статистически параметр потока отказов определяют по формуле

(1.15)

где число отказов восстанавливаемого объекта за интервал времени от до .

Средний ресурс - это математическое ожидание ресурса.

Гамма-процентный ресурс % - это наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью , выраженной в процентах. Формула для расчёта аналогична формуле для гамма-процентной наработке до отказа.

Назначенный ресурс определяется как суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Средний срок службы - математическое ожидание срока службы.

Гамма-процентный срок службы % - это календарная продолжительность от начала эксплуатации объекта, в течении которой он не достигнет предельного состояния с заданной вероятностью , %.

Назначенный срок службы - календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению объекта должно быть прекращено.

Назначенный ресурс и назначенный срок службы устанавливают на основании субъективных или организационных предположений, и они являются косвенными показателями надёжности.

Момент восстановления работоспособности объекта после отказа является случайным событием. Поэтому в качестве характеристики ремонтопригодности используется функция распределения этой случайной величины . Вероятностью восстановления называется вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного:

Вероятность не восстановления на заданном интервале , т.е. вероятность того, что равна

Рисунок 1.4 - Изменение вероятностей восстановления и не восстановления во времени

Плотность вероятности момента восстановления равна

Средним временем восстановления является момент 1-го порядка (математическое ожидание) времени восстановления работоспособного состояния объекта.

(1.16)

Статистически среднее время восстановления равно где - время обнаружения и устранения - го отказа объекта.

Важным показателем ремонтопригодности объекта является интенсивность восстановления , которая, следуя общей методологии, аналогична показателю безотказности – интенсивности отказов .

Показатели сохраняемости – средний срок сохраняемости и гамма-процентный срок сохраняемости – определяются аналогично соответствующим показателям безотказности и долговечности. Средний срок сохраняемости – это математическое ожидание срока сохраняемости; а гамма-процентный срок сохраняемости – это срок сохраняемости, достигаемый объектом с заданной вероятностью , %.

Так как вероятностные характеристики отдельных свойств надёжности полагают независимыми, то для оценки нескольких свойств надёжности используют комплексныепоказатели. Рассмотрим применяемые в теории надёжности комплексные показатели.

Коэффициент готовности – это вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается

Коэффициент оперативной готовности определяется как вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени : (1.18)

До этого момента такие объекты могут быть в режиме дежурства, но без выполнения заданных рабочих функций. В обоих режимах возможно возникновение отказов и восстановление работоспособности объекта.

Иногда пользуются коэффициентом простоя

Коэффициент технического использования – это отношение математическое ожидание интервала времени наработки восстанавливаемого объекта к математическому ожиданию интервалов времени пребывания объекта в состояниях простоев, обусловленных техническим обслуживанием и ремонтами, за тот же период эксплуатации

(1.20)

где математическое ожидание наработки восстанавливаемого объекта; математическое ожидание интервалов времени простоев при техническом обслуживании; математическое ожидание времени, затрачиваемого на плановые и внеплановые ремонты. характеризует долю времени объекта в работоспособном состоянии относительно рассматриваемой продолжительности эксплуатации.

Коэффициент планируемого применения – это отношение разности заданной продолжительности эксплуатации и математического ожидания суммарной продолжительности плановых технических обслуживаний и ремонтов за тот же период эксплуатации к значению этого периода

(1.21)

Коэффициент сохранения эффективности – отношение значения показателя эффективности за определённую продолжительность эксплуатации Э к номинальному значению показателя Э 0 , вычисленному при условии, что отказы объекта в течение того же периода эксплуатации не возникают. Этот коэффициент характеризует степень влияния отказов элементов объекта на эффективность его применения по назначению

При этом под эффективностью применения объекта понимают его свойство создавать определённый полезный результат (выходной эффект) в течение периода эксплуатации при определённых условиях. Показатель эффективности – показатель качества, характеризующий выполнение объектом его функций. Аналитические выражения для расчёта эффекта объектов различных типов приведены в ГОСТ 27.003-89. Выбор номенклатуры показателей надёжности и их нормирование осуществляют на основании ГОСТ 27.033-83.

1.4 Общий порядок обеспечения надёжности на стадиях

«жизненного» цикла объекта

В соответствии с ГОСТ 27.003-90 рассмотрим некоторые вопросы заданной темы.

1.4.1 Состав и общие правила задания требований на надёжность

1 При задании требований по надёжности определяют и согласовывают между заказчиком и разработчиком:

Типовую модель эксплуатации, применительно к которой задают требования по надёжности;

Критерии отказов по модели эксплуатации;

Критерии предельных состояний изделий, применительно к которым устанавливают требования по долговечности и сохраняемости;

Понятие «выходной эффект» для изделий, требования к которым установлены коэффициентом сохранения эффективности К эф . ;

Номенклатуру и значения показателей надёжности (ПН) в соответствии с принятой моделью эксплуатации;

Требования и ограничения по конструктивным, технологическим и эксплуатационным способам обеспечения надёжности, при необходимости с учётом экономических ограничений;

Необходимость разработки программы обеспечения надёжности.

2 Типовая модель эксплуатации изделий должна содержать:

Последовательность видов, режимов эксплуатации (хранения, транспортировки, развёртывания, ожидания применения по назначению, технического обслуживания и плановых ремонтов) с указанием их продолжительности;

Характеристику принятой системы технического обслуживания и ремонта, обеспечения запасными частями, инструментом и эксплуатационными материалами;

Уровни внешних воздействующих факторов и нагрузок для каждого вида, режима эксплуатации;

Численность и квалификацию обслуживающего и ремонтного персонала.

3 Номенклатура ПН выбирается по ГОСТ 27.002.

4 Общее количество, выбираемых ПН, должно быть минимальным.

5 Для восстанавливаемых изделий, как правило, задают комплексный ПН …, возможные сочетания задаваемых показателей К г и Т о; К г и Т в; Т о и Т в. Недопустимое сочетание К г, Т о, Т в.

6 Требования по надёжности включают в следующие документы:

Техническое задание (ТЗ) на разработку или модернизацию изделий;

Технические условия (ТУ) на изготовление продукции;

Стандарты общих технических требований (ОТТ), общих технических условий (ОТУ) и технических условий (ТУ).

В паспортах, формулярах, инструкциях и другой эксплуатационной документации требования по надёжности (ПН) указывают по согласованию между заказчиком и разработчиком в качестве справочных. Требования по надёжности могут включаться в договор на разработку и поставку изделий.

1.4.2 Порядок задания требований по надёжности на различных

стадиях жизненного цикла изделий

1 Требования по надёжности, включаемые в ТЗ, определяют на стадии исследования и разработки путём:

Анализа требований заказчика, условий эксплуатации, ограничений по всем видам затрат;

Выработки и согласования с заказчиком критериев отказов и предельных состояний;

Выбором рациональной номенклатуры ПН;

Установления значений ПН изделия и его составных частей.

2 На стадиях разработки изделия уточняются требования по надёжности путём:

Рассмотрения возможных вариантов построения изделия и расчёта ПН;

Выбора варианта, удовлетворяющего заказчика по совокупности ПН и затрат;

Уточнения значений ПН изделия и его составных частей.

3 В ТУ на серийное изделие включают те ПН, которые предполагается контролировать на этапе изготовления изделия.

4 На стадиях серийного производства и эксплуатации допускается коррекция значений ПН по результатам испытаний или эксплуатации.

5 Для сложных изделий при их отработке, опытном или серийном производстве допускается поэтапное задание значений ПН (при условии их повышения) и параметров планов контроля с учётом накопленных статистических данных по предшествующим изделиям-аналогам и по согласованию между заказчиком и разработчиком.

6 При наличии прототипов (аналогов) с достоверно известным уровнем надёжности состав работ по заданию требований по надёжности в пунктах 1 и 2 может быть сокращён за счёт тех показателей, информация по которым есть на момент формирования раздела ТЗ, ТУ «Требования по надёжности».

1.5 Аналитические зависимости между показателями надёжности

Зависимость между вероятностью безотказной работы и средней наработкой до отказа:

Отсюда, т.е. средняя наработка до отказа равна площади под кривой вероятности безотказной работы объекта.

Связь между вероятностью безотказной работы и интенсивностью отказов

Если на испытание поставлено N 0 объектов, то число объектов, которые будут исправно работать к моменту времени t , равно

Для момента времени

Число отказавших объектов

Тогда (1.24)

Так как - положительно определённая функция, то

(1.25)

Связь между вероятностью безотказной работы, интенсивностью отказов и средней наработкой до отказа.

(1.26)

Для , например, в нормальный период эксплуатации

(1.27)

При этом (1.28)

Зависимость между плотностью вероятности времени безотказной

работы и параметром потока отказов.

Пусть испытывается N 0 число объектов, причём, отказавшие объекты заменяются новыми (выборка с возмещением). Если объекты не восстанавливаемые, то параметр потока отказов равен

(1.29)

Среднее число отказавших объектов в интервале времени пропорционально значению , длине интервала времени и .

При рассмотрении вопросов надежности часто бывает удобно представить себе дело так, словно на элемент действует поток отказов с некоторой интенсивностью l(t); элемент отказывает в тот момент, когда происходит первое событие этого потока.

Образ "потока отказов" приобретает реальный смысл, если отказавший элемент немедленно заменя­ется новым (восстанавливается). Последовательность случайных моментов времени, в которое проис­ходят отказы (рис.3.10), представляет собой некоторый поток событий, а интервалы между событиями - независимые случайные величины, распределенные по соответствующему закону распределения.

Понятие "интенсивности отказов" может быть введено для любого закона надежности с плотностью f(t); в общем случае интенсивность отказов l будет переменной величиной.

Интенсивностью (или иначе "опасностью") отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим n(t) - число элементов, оказавшихся исправными к моменту t, а m(t, t+Dt), как и раньше, - число элементов, отказавших на ма­лом участке времени (t, t+Dt). На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к мо­менту t элементов n(t). Нетрудно убедиться, что при большом N отношение будет приближенно равно интенсивности отказов l (t):

Действительно, при большом N n(t)»Np(t)

Но согласно формуле (3.4) ,

В работах по надежности приближенное выражение (3.8) часто рассматривают как определение ин­тенсивности отказов, т.е. её определяют как среднее число отказов в единицу времени, приходящееся на один работающий элемент .

Характеристике l(t) можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно . Действительно, рассмотрим элемент вероятности l(t)dt - вероятность того, что за время (t, t+dt) эле­мент перейдет из состояния "работает" в состояние "не работает", при условии, что до момента t он ра­ботал. В самом деле, безусловная вероятность отказа элемента на участке (t, t+dt) равна f(t)dt. Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента t;

В - элемент отказал на участке времени (t, t+dt).

По правилу умножения вероятностей: f(t)dt = P(АВ) = Р(А) Р(В/А).



Учитывая, что Р(А)=р(t), получим: ;

а величина l(t) есть не что иное, как условная плотность вероятности перехода от состояния "работает" в состояние "отказал" для момента t.

Если известна интенсивность отказов l(t), то можно выразить через нее надежность р(t). Учитывая, что f(t)=-p"(t), запишем формулу (3.7) в виде:

Интегрируя, получим: ,

Таким образом, надежность выражается через интенсивность отказов.

В частном случае, когда l(t)=l=const, формула (3.9) дает:

p(t)=e - l t , (3.10)

т.е. так называемый экспоненциальный закон надежности.

Пользуясь образом "потока отказов", можно истолковать не только формулу (3.10), но и более об­щую формулу (3.9). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности p(t) действует поток отказов с переменной интенсивностью l(t). Тогда формула (3.9) для р(t) выражает вероятность того, что на участке времени (0, t) не появиться не одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности, работу эле­мента, начиная с момента включения t=0, можно представлять себе так, что на элемент действует пуас­соновский закон отказов; для экспоненциального закона надежности этот поток будет с постоянной ин­тенсивностью l, а для неэкспоненциального - с переменной интенсивностью l(t).

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется но­вым . Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским . Действительно, интенсивность его будет зависеть не просто от времени t, прошедшего с начала всего процесса, а и от времени t, прошедшего со случайного момента включения именно данного элемента; значит, поток событий имеет последствие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отка­зать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса. но при переменной, а не при постоянной интен­сивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциаль­ного, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 3.11).

Параметр l этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой p(t) и осями коор­динат. Для этого нужно положить параметр l показательного закона равным

где - площадь, ограниченная кривой надежности p(t). Таким образом, если мы хотим характеризо­вать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интен­сивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определили величину как площадь, ограниченную кривой р(t). Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по стати­стическому материалу как среднее арифметическое всех наблюдённых значений случайной величины T - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую р(t).

Пример 1. Надежность элемента р(t) убывает со временем по линейному закону (рис. 3.12). Найти интенсивность отказов l(t) и среднее время безотказной работы элемента .

Решение. По формуле (3.7) на участке (0, t o) имеем:

Согласно заданному закону надежности

(0

Второй интеграл здесь равен .

Что касается первого, то он вычислен приближённо (численно): ,

откуда » 0,37+0,135=0,505.

Пример 3. Плотность распределения времени безотказной работы элемента постоянна на участке (t 0 , t 1) и равна нулю вне этого участка (рис. 3.16). Найти интенсивность отказов l(t).

Решение. Имеем: , (t o

График интенсивности отказов показан на рис. 3.17; при t® t 1, l(t)® ¥ .

Наиболее удобным для аналитического описания является так называемый экспоненциальный (или показательный) закон надежности, который выражается формулой

где - постоянный параметр.

График экспоненциального закона надежности показан на рис. 7.10. Для этого закона функция распределения времени безотказной работы имеет вид

а плотность

Это есть уже известный нам показательный закон распределения, по которому распределено расстояние между соседними событиями в простейшем потоке с интенсивностью (см. § 4 гл. 4).

При рассмотрении вопросов надежности часто бывает удобно представлять себе дело так, словно на элемент действует простейший поток отказов с интенсивностью Я; элемент отказывает в момент, когда приходит первое событие этого потока.

Образ «потока отказов» приобретает реальный смысл, если отказавший элемент немедленно заменяется новым (восстанавливается).

Последовательность случайных моментов времени, в которые проис ходят отказы (рис. 7.11), представляет собой простейший поток событии, а интервалы между событиями - независимые случайные величины, распределенные по показательному закону (3,3),

Понятие «интенсивности отказов» может быть введено не только для экспоненциального, но и для любого другого закона надежности о плотностью вся разница будет в том, что при неэкспоненциальном законе интенсивность отказов Я будет уже не постоянной величиной, а переменной.

Интенсивностью (или иначе «опасностью») отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим - число элементов, оказавшихся исправными к моменту , как и и раньше, - число элементов, отказавших на малом участке времени На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к моменту t элементов . Нетрудно убедиться, что при большом N это отношение будет приближенно равно интенсивности отказов

Действительно, при большом N

Но согласно формуле (2.6)

В работах по надежности приближенное выражение (3.5) часто рассматривают как определение интенсивности отказов, т. е. определяют ее как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности - вероятность того, что за время элемент перейдет из состояния «работает» в состояние «не работает», при условии, что до момента t он работал. В самом деле, безусловная вероятность отказа элемента на участке равна Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента

В - элемент отказал на участке времени По правилу умножения вероятностей:

Учитывая, что получим:

а величина есть не что иное, как условная плотность вероятности перехода из состояния «работает» в состояние «отказал» для момента t.

Если известна интенсивность отказов , то можно выразить через нее надежность Учитывая, что запишем формулу (3.4) в виде:

Интегрируя, получим:

Таким образом надежность выражается через интенсивность отказов.

В частном случае, когда , формула (3.6) дает:

т. е. уже известный нам экспоненциальный закон надежности.

Пользуясь образом «потока отказов», можно истолковать не только формулу (3.7), но и более общую формулу (3.6). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности действует поток отказов с переменной интенсивностью Тогда формула (3.6) для выражает вероятность того, что на участке времени (0, t) не появится ни одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности работу элемента, начиная с момента включения можно представлять себе так, что на элемент действует пуассоновский поток отказов; для экспоненциального закона надежности это будет поток с постоянной интенсивностью , а для неэкспоненциального - с переменной интенсивностью

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется новым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, протекшего с начала всего процесса, а и от времени , протекшего со случайного момента включения именно данного элемента; значит, поток событий имеет последействие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отказать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса, но при переменной, а не постоянной интенсивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциального, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 7.12). Параметр этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой и осями координат. Для этого нужно положить параметр показательного закона равным

где - площадь, ограниченная кривой надежности

Таким образом, если мы хотим характеризовать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интенсивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определяли величину t как площадь, ограниченную кривой Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по статистическому материалу как среднее арифметическое всех наблюденных значений случайной величины Т - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую

Пример 1. Надежность элемента убывает со временем по линейному закону (рис. 7.13). Найти интенсивность отказов и среднее время безотказной работы элемента

Решение. По формуле (3.4) на участке ) имеем:

Согласно заданному закону надежности 4

Рассказать друзьям