Матричная алгебра - элементарные преобразования матриц. Элементарные преобразования строк матрицы Элементарные преобразования столбцов матрицы

💖 Нравится? Поделись с друзьями ссылкой

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:

1) перестановка двух строк (столбцов);

2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;

3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

Тогда можно вынести множитель :

теперь, вычитая из элементов j -го столбца соответствующие элементы первого столбца, умноженные на , получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы в так, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что ). Тогда знак соответствующего определителя равен .

П р и м е р. С помощью элементарных преобразований привести матрицу

к треугольному виду.

Р е ш е н и е. Сначала умножим первую строку матрицы на 4, а вторую на (–1) и прибавим первую строку ко второй:

Теперь умножим первую строку на 6, а третью на (–1) и прибавим первую строку к третьей:

Наконец, умножим 2-ю строку на 2, а 3-ю на (–9) и прибавим вторую строку к третьей:

В результате получена верхняя треугольная матрица

Пример. Решить систему линейных уравнений, используя матричный аппарат:

Р е ш е н и е. Запишем данную систему линейных уравнений в матричной форме:

Решение данной системы линейных уравнений в матричной форме имеет вид:

где – матрица, обратная к матрице А .

Определитель матрицы коэффициентов А равен:

следовательно, матрица А имеет обратную матрицу .

2. Мальцев А.И. Основы линейной алгебры. – М.: Наука, 1975. – 400 с.

3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. – М.: Наука, 1986. – 544 с.

Элементарные преобразования матрицы - это такие преобразования матрицы , в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений , которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу , и прибавление к любой строке матрицы другой строки, умноженной на константу , .

Аналогично определяются элементарные преобразования столбцов .

Элементарные преобразования обратимы .

Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений :
  • перестановку уравнений;
  • умножение уравнения на ненулевую константу;
  • сложение одного уравнения с другим, умноженным на некоторую константу.
Т.е. элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение: Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

Нахождение обратных матриц

Теорема (о нахождении обратной матрицы).
Пусть определитель матрицы не равен нулю, пусть матрица определяется выражением . Тогда при элементарном преобразовании строк матрицы к единичной матрице в составе одновременно происходит преобразование к .

Приведение матриц к ступенчатому виду

Введём понятие ступенчатых матриц: Матрица имеет ступенчатый вид , если: Тогда справедливо следующее утверждение:

Связанные определения

Элементарная матрица. Матрица А является элементарной, если умножение на нее произвольной матрицы В приводит к элементарным преобразованиям строк в матрице В.

Литература

Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов . - 6-е изд., стер. - М .: ФИЗМАТЛИТ, 2004. - 280 с.


Wikimedia Foundation . 2010 .

Смотреть что такое "Элементарные преобразования матрицы" в других словарях:

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые ч цы, из к рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго для наименования… … Физическая энциклопедия

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Э. ч.» в современной физике находит выражение идея о первообразных сущностях,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Матрица. Матрица математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

Матрица преобразований применяется для вычисления новых координат объекта при его трансформации. Изменяя значения элементов матрицы преобразования, к объектам можно применять любые трансформации (например: масштабирование, зеркальное отражение, поворот, перемещение и т. п.). При любой трансформации сохраняется параллельность линий объекта.

Координаты в PDF выражаются в терминах двумерного пространства. Точка (x, y) в пространстве может быть выражена в векторной форме . Постоянный третий элемент этого вектора (1) нужен для использования вектора с матрицами 3х3 в вычислениях, описанных ниже.

Преобразование между двумя системами координат представлено, как матрица 3х3 и записывается следующим образом:

Координатные преобразования выражаются в виде матричных умножений:

Так как последняя колонка не оказывает ни какого влияния на результаты расчета, то она в вычислениях не принимает участия. Координаты трансформации высчитываются по следующим формулам:

Единичная матрица

Единичной матрицей называется, та у которой значения матрицы a и d равны 1 , а остальные равны 0 . Такая матрица применяется по умолчанию, так как не приводит к трансформации. Поэтому единичную матрицу используют как основу.

Масштабирование

Для увеличения или уменьшения размера объекта по горизонтали/вертикали следует изменить значение a или d соответственно, а остальные применить из единичной матрицы.

Например: Для увеличения размера объекта в два раза по горизонтали, значение a необходимо принять равным 2, а остальные оставить такими как в единичной матрице.

Отражение

Чтобы получить зеркальное отображение объекта по горизонтали следует установить значение a = -1 , по вертикали d = -1 . Изменение обеих значений применяется для одновременного отображения по горизонтали и вертикали.

Наклон

Наклон объекта по вертикали/горизонтали обеспечивается изменением значений b и c соответственно. Изменение значения b/-b - наклон вверх/вниз, c/-c – вправо/влево.

Например: Для наклона объекта по вертикали вверх установим значение b = 1

Высчитываем новые координаты объекта:

В итоге к наклону объекта приводит только координата y , которая увеличивается на значение x .

Поворот

Поворот — это комбинация масштабирования и наклона, но для сохранения начальных пропорций объекта, преобразования должны проводится с точными вычислениями при использовании синусов и косинусов.

Сам поворот происходит против часовой стрелки, α задаёт угол поворота в градусах.

Перемещение

Перемещение осуществляется изменением значений e (по горизонтали) и f (по вертикали). Значения задаются в пикселях.

Например: Перемещение с использованием матрицы применяется редко из-за того, что эту операцию можно проделать другими методами, например, изменить положение объекта во вкладке .

Поскольку матрица трансформации имеет только шесть элементов, которые могут быть изменены, визуально она отображается в PDF . Такая матрица может представлять любое линейное преобразование из одной координатной системы в другую. Матрицы преобразований образуются следующим образом:

  • Перемещения указываются как , где t x и t y — расстояния от оси системы координат по горизонтали и вертикали, соответственно.
  • Масштабирование указывается как . Это масштабирует координаты так, что 1 единица в горизонтальном и вертикальном измерениях в новой координатной системе такого же размера, как и s x и s y единиц в старой координатной системе соответственно.
  • Повороты производятся матрицей , что соответствует повороту осей координатной системы на θ градусов против часовой стрелки.
  • Наклон указывается как , что соответствует наклону оси x на угол α и оси y на угол β .

На рисунке ниже показаны примеры трансформации. Направления перемещения, угол поворота и наклона, показанные на рисунке, соответствуют положительным значениям элементов матрицы.

Умножения матрицы не коммутативны — порядок, в котором перемножаются матрицы, имеет значение.

В таблице ниже приведены допустимые преобразования и значения матрицы.

Исходный рисунок Трансформированный рисунок Матрица Описание
1 0
0 2
0 0

Масштаб по вертикали. Если значение матрицы больше 1, объект расширяется, меньше 1 — сжимается.

2 0
0 1
0 0

Масштаб по горизонтали. Если значение матрицы больше 1, объект расширяется, меньше 1 — сжимается.

-1 0
0 1
0 0

Отражение по горизонтали.

1 0
0 -1
0 0

Отражение по вертикали.

1 1
0 1
0 0

Наклон по вертикали вверх.

1 -1
0 1
0 0

Наклон по вертикали вниз.

1 0
1 1
0 0

Наклон по горизонтали вправо.

1 0
-1 1
0 0
Матричная алгебра - Элементарные преобразования матриц

Элементарные преобразования матриц

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:
1) перестановка двух строк (столбцов);
2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;
3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

где ≠ 0.
Тогда можно вынести множитель :

теперь, вычитая из элементов j - го столбцасоответствующие элементы первого столбца, умноженные на, получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы втак, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что). Тогда знак соответствующего определителя равен.

П р и м е р. С помощью элементарных преобразований привести матрицу

Введем понятие элементарной матрицы.

ОПРЕДЕЛЕНИЕ. Квадратная матрица, получающаяся из единичной матрицы в результате неособенного элементарного преобразования над строками (столбцами), называется элементарной матрицей, соответствующей этому преобразованию.

Так, например, элементарными матрицами второго порядка являются матрицы

где А - любой ненулевой скаляр.

Элементарная матрица получается из единичной матрицы Е в результате одного из следующих неособенных преобразований:

1) умножение строки (столбца) матрицы Е на отличный от нуля скаляр;

2) прибавление (или вычитание) к какой-либо строке (столбцу) матрицы Е другой строки (столбца), умноженной на скаляр.

Обозначим через матрицу, получающуюся из матрицы Е в результате умножения строки на ненулевой скаляр А:

Обозначим через матрицу, получающуюся из матрицы Е в результате прибавления (вычитания) к строке строки, умноженной на А;

Через будем обозначать матрицу, получающуюся из единичной матрицы Е в результате применения элементарного преобразования над строками; таким образом, есть матрица, соответствующая преобразованию

Рассмотрим некоторые свойства элементарных матриц.

СВОЙСТВО 2.1. Любая элементарная матрица обратима. Матрица, обратная к элементарной, является элементарной.

Доказательство. Непосредственная проверка показывает, что для любого отличного от нуля скаляра А. и произвольных выполняются равенства

На основании этих равенств заключаем, что имеет место свойство 2.1.

СВОЙСТВО 2.2. Произведение элементарных матриц является обратимой матрицей.

Это свойство непосредственно следует из свойства 2.1 и следствия 2.3.

СВОЙСТВО 2.3. Если неособенное строчечное элементарное преобразование переводит -матрицу А в матрицу В, то . Верно и обрсипное утверждение.

Доказательство. Если есть умножение строки на ненулевой скаляр А, то

Если же , то

Легко проверить, что верно также обратное утверждение.

СВОЙСТВО 2.4. Если матрица С получается из матрицы А при помощи цепочки неособенных строчечных элементарных преобразований , то . Верно и обратное утверждение.

Доказательство. По свойству 2.3, преобразование переводит матрицу А в матрицу переводит матрицу в матрицу и т. д. Наконец, переводит матрицу в матрицу Следовательно, .

Легко проверить, что верно и обратное утверждение. Условия обратимости матрицы. Для доказательства теоремы 2.8 необходимы следующие три леммы.

ЛЕММА 2.4. Квадратная матрица с нулевой строкой (столбцом) необратима.

Доказательство. Пусть А - квадратная матрица с нулевой строкой, В - любая матрица, . Пусть - нулевая строка матрицы А; тогда

т. е. i-я строка матрицы АВ является нулевой. Следовательно, матрица А необратима.

ЛЕММА 2.5. Если строки квадратной матрицы линейно зависимы, то матрица необратима.

Доказательство. Пусть А - квадратная матрица с линейно зависимыми строками. Тогда существует цепочка неособенных строчечных элементарных преобразований, переводящих А в ступенчатую матрицу; пусть такая цепочка. По свойству 2.4 элементарных матриц, имеет место равенство

где С - матрица с нулевой строкой.

Следовательно, по лемме 2.4 матрица С необратима. С другой стороны, если бы матрица А была обратимой, то произведение слева в равенстве (1) было бы обратимой матрицей, как произведение обратимых матриц (см. следствие 2.3), что невозможно. Следовательно, матрица А необратима.

Рассказать друзьям