Метод замены переменной. Подробная теория с примерами

💖 Нравится? Поделись с друзьями ссылкой

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом , где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала ;
– Собственно замена переменной .

По сути дела, это одно и то же, но оформление решения выглядит по-разному.

Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:

То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.

Пример 1

Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию под знак дифференциала:

Раскрывая дифференциал, легко проверить, что:

Фактически и – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?

Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ .

Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:

Теперь можно пользоваться табличной формулой :


Готово

Единственное отличие, у нас не буква «икс», а сложное выражение .

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила .

Пример 2

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .
Далее используем табличную формулу :

Проверка:


Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:

В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:

Строго говоря, решение должно выглядеть так:

Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой .
В данном случае напрашивается:
Вторая по популярности буква для замены – это буква .
В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:
Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место.
Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко:
Теперь по правилам пропорции выражаем нужный нам :

В итоге:
Таким образом:

А это уже самый что ни на есть табличный интеграл (таблица интегралов , естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .


Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:


Проведем замену:


Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче .

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Пример 6

Найти неопределенный интеграл.

Проведем замену: (другую замену здесь трудно придумать)

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл .

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении .

Пример 7

Найти неопределенный интеграл. Выполнить проверку.

Пример 8

Найти неопределенный интеграл.

Замена:
Осталось выяснить, во что превратится

Хорошо, мы выразили, но что делать с оставшимся в числителе «иксом»?!
Время от времени в ходе решения интегралов встречается следующий трюк: мы выразим из той же замены !

Пример 9

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 10

Найти неопределенный интеграл.

Наверняка некоторые обратили внимание, что в моей справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная : (функции , могут быть и не в произведении)

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за знаменатель, то велики шансы, что числитель превратится во что-нибудь хорошее.

Замена переменной в неопределенном интеграле. Формула преобразования дифференциалов. Примеры интегрирования. Примеры линейных подстановок.

Содержание

См. также: Таблица неопределенных интегралов
Основные элементарные функции и их свойства

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x(t) , или t = t(x) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f(x) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x(t) . Тогда мы должны выразить функцию f(x) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f(x) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x(t) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

Тогда
.

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t(x) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′(x) - это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x - это функция от t .
(2) ,
где t - это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2) . Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x)′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b - постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

A) Вычислить интеграл
.
Решение.
.

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции .
.
ln 2 - это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Вычислить заданный интеграл непосредственным интегрированием

удаётся не всегда. Одним из наиболее эффективных приёмов

является метод подстановки или замены переменной интегрирования.

Сущность этого метода заключается в том, что путём введения новой переменной интегрирования удаётся свести заданный интеграл к

новому интегралу, который берётся непосредственным интегрированием.

Рассмотрим этот метод:

Пусть - непрерывная функция

необходимо найти: (1)

Сделаем замену переменной интегрирования:

где φ (t) – монотонная функция, которая имеет непрерывную производную

и существует сложная функция f (φ (t)).

Применив к F (х) = F(φ (t)) формулу дифференцирования сложной

функции, получим:

﴾F (φ (t))﴿′ = F′(x) ∙ φ′ (t)

Но F′(x) = f (x) = f (φ (t)), поэтому

﴾F (φ (t))﴿′ = f (φ (t)) ∙ φ′ (t) (3)

Таким образом, функция F(φ (t)) является первообразной для функции

f (φ (t)) ∙ φ′ (t), поэтому:

∫ f (φ (t)) ∙ φ′ (t) dt = F (φ (t)) + C (4)

Учитывая, что F (φ (t)﴿ = F (x), из (1) и (4) следует формула замены

переменной в неопределённом интеграле:

∫ f (x)dx = ∫ f(φ (t)) φ′ (t)dt (5)

Формально формула (5) получается заменой х на φ (t) и dх на φ′ (t)dt

В полученном после интегрирования по формуле (5) результате следует

перейти снова к переменной х. Это всегда возможно, так как по предпо-

ложению функция х = φ (t) монотонна.

Удачный выбор подстановки обычно представляет известные труд-

ности. Для их преодоления необходимо овладеть техникой дифферен-

цирования и хорошо знать табличные интегралы.

Но все же можно установить ряд общих правил и некоторых приемов

интегрирования.

Правила интегрирования способом подстановки:

1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подинтегральное выражение, если нужно).

2. Определяют, какую часть подинтегральной функции нужно заменить

новой переменной, и записывают эту замену.

3. Находят дифференциалы обеих частей записи и выражают дифферен-

циал старой переменной (или выражение, содержащее этот диффе-

ренциал) через дифференциал новой переменной.

4. Производят замену под интегралом.

5. Находят полученный интеграл.



6. В результате переходят к старой переменной.

Примеры решения интегралов способом подстановки:

1. Найти: ∫ х²(3+2х ) dx

Решение:

сделаем подстановку 3+2х = t

Найдём дифференциал обеих частей подстановки:

6x dx = dt, откуда

Следовательно:

∫ x (3+2x ) dx = ∫ t ∙ dt = ∫ t dt = ∙ + C = t + C

Заменив t на его выражение из подстановки, получим:

∫ x (3+2x ) dx = (3+2x ) + С


Решение:

= = ∫ е = е + C = е + C

Решение:

Решение:

Решение:

Понятие определённого интеграла.

Разность значений для любой первообразной функции при изменении аргумента от до называется определенный интегралом этой функции в пределах от а до b и обозначается:

а и b называются нижним и верхним пределами интегрирования.

Чтобы вычислить определенный интеграл нужно:

1. Найти соответствующий неопределенный интеграл

2. Подставить в полученное выражение вместо х сначала верхний предел интегрирования в, а затем нижний – а.

3. Из первого результата подстановки вычесть второй.

Коротко это правило записывается в виде формул так:

Эта формула называется формулой Ньютона - Лейбница.

Основные свойства определенного интеграла:

1. , где K=const

3. Если , то

4. Если функция неотрицательна на отрезке , где , то

При замене в определенном интеграле старой переменной интегрирования на новую необходимо старые пределы интегрирования заменить новыми. Эти новые пределы определяются выбранной подстановкой.

Применение определённого интеграла.

Площадь криволинейной трапеции ограниченной кривой , осью абсцисс и двумя прямыми и вычисляется по формуле:

Объем тела, образованного вращением вокруг оси абсцисс криволинейной трапеции, ограниченной кривой , не меняющей свой знак на , осью абсцисс и двумя прямыми и вычисляется по формуле:

С помощью определенного интеграла можно решать и ряд физических задач.

Например:

Если скорость прямолинейно движущегося тела является известной функцией времени t, то путь S, пройденный этим телом с момента времени t = t 1 до момента времени t = t 2 определяется формулой:

Если переменная сила является известной функцией пути S (при этом предполагается, что направление силы не меняется) то работа А, совершаемая этой силой на пути от до определяется формулой:

Примеры:

1. Вычислить площадь фигуры, ограниченной линиями:

y = ; y = (x-2) 2 ; 0x.

Решение:

а) Построим графики функций: y = ; y = (x-2) 2

б) Определим фигуру, площадь которой нужно вычислить.

в) Определим пределы интегрирования, решая уравнение: = (x-2) 2 ; x = 1 ;

г) Вычисляем площадь заданной фигуры:

S = dx + 2 dx = 1 ед 2


2. Вычислить площадь фигуры, ограниченной линиями:

Y = x 2 ; x = y 2 .

Решение:

x 2 = ; x 4 = x ;

x (x 3 – 1) = 0

x 1 = 0 ; x 2 = 1

S = - x 2) dx = ( x 3\2 - ) │ 0 1 = ед 2

3. Вычислить объём тела, полученного вращением вокруг оси 0x фигуры, ограниченной линиями: y = ; x = 1 .

Решение:

V = π dx = π ) 2 dx = π = π │ = π/2 ед. 3


Домашняя контрольная работа по математике
Варианты заданий.

Вариант №1

y = (x + 1) 2 ; y = 1 – x ; 0x


Вариант № 2

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = 6 – x ; y = x 2 + 4


Вариант №3.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = - x 2 + 5 ; y = x + 3


Вариант №4.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = x 2 ; x = 3 ; Ox


Вариант №5.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = 3 + 2x – x 2 ; Ox


Вариант №6.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = x + 6 ; y = 8 + 2x – x 2


Вариант № 7

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить объём тела, образованного вращением вокруг Ox фигуры ограниченной линиями:

y = sin x ; y = 0 ; x = 0 ; x = π


Вариант №8.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

Список литературы

1. Письменный Д.Т. Конспект лекций по высшей математике Части 1, 2. М. АЙРИС ПРЕСС, 2006г.

2. Григорьев В.П., Дубинский Ю.А. Элементы высшей математики. М. Академия, 2008г.

3. Выгодский М.Я. Справочник по высшей математике. М. Наука,2001г.

4. Шипачев В.С. Высшая математика. М. Высшая школа,2005г.

5. Шипачев В.С. Задачник по высшей математике. М. Высшая школа,2005г.

2. Замена переменной (метод подстановки)

Суть метода подстановки заключается в том, что в результате введения новой переменной заданный сложный интеграл приводится к табличному или такому, прием вычисления которого известен.

Пусть требуется вычислить интеграл . Существует два правила подстановки:


Общего правила подбора функции
не существует, но есть несколько типов подынтегральных функций, для которых имеются рекомендации по подбору функции
.


Замену переменных можно применять несколько раз, пока не будет получен результат.

Пример 1. Найти интегралы:

а)
; б)
; в)
;

г)
; д)
; е)
.

Решение.

а) Среди табличных интегралов нет содержащих радикалы различных степеней, поэтому «хочется избавиться», прежде всего, от
и
. Для этого потребуется заменить х таким выражением, из которого легко извлекались бы оба корня:

б) Типичный пример, когда возникает желание «избавиться» от показательной функции
. Но в данном случае удобнее за новую переменную взять всё выражение, стоящее в знаменателе дроби:

;

в) Замечая, что в числителе стоит произведение
, являющееся частью дифференциала подкоренного выражения, заменим все это выражение новой переменной:

;

г) Здесь, как и в случае а), хочется избавиться от радикала. Но поскольку, в отличие от пункта а), здесь только один корень, то именно его и заменим новой переменной:

д) Здесь выбору замены способствуют два обстоятельства: с одной стороны интуитивное желание избавиться от логарифмов, с другой стороны – наличие выражения , являющегося дифференциалом функции
. Но так же как и в предыдущих примерах, в замену лучше включить и сопутствующие логарифму константы:

е) Здесь, так же как и в предыдущем примере, интуитивное желание избавиться от громоздкого показателя в подынтегральной функции согласуется с известным фактом:
(формула 8 таблицы 3). Поэтому имеем:

.

Замена переменных для некоторых классов функций

Рассмотрим некоторые классы функций, для которых могут быть рекомендованы определенные подстановки.

Таблица 4. Рациональные функции

Вид интеграла

Способ интегрирования

1.1.

1.2.

1.3.

Выделение полного квадрата:

1.4.

Рекуррентная формула

Трансцендентные функции:

1.5.
– подстановка t = e x ;

1.6.
– подстановка t = log a x .

Пример 2. Найти интегралы от рациональных функций:

а)
; б)
;

в)
; д)
.

Решение.

а) Этот интеграл нет необходимости вычислять с помощью замены переменных, здесь проще использовать подведение под знак дифференциала:

б) Аналогично, используем подведение под знак дифференциала:

;

в) Перед нами интеграл типа 1.3 таблицы 4, воспользуемся соответствующими рекомендациями:

д) Аналогично предыдущему примеру:

Пример 3. Найти интегралы

а)
; б)
.

Решение.

б) Подынтегральное выражение содержит логарифм, поэтому воспользуемся рекомендацией 1.6. Только в данном случае удобнее заменить не просто функцию
, а все подкоренное выражение:

.

Таблица 6. Тригонометрические функции (R

Вид интеграла

Способ интегрирования

3.1.

Универсальная подстановка

,

,
,

3.1.1.
, если

Подстановка

3.1.2.
, если

Подстановка

.

3.1.3. .
, если

(т.е. есть только четные степени функций
)

Подстановка

3.2.

Если
– нечетное, то см. 3.1.1;

если
– нечетное, то см. 3.1.2;

если
– четное, то см. 3.1.3;

если
– четные, то использовать формулы понижения степени

,

3.3.
,

,

Использовать формулы

Пример 4. Найти интегралы:

а)
; б)
; в)
; д)
.

Решение.

а) Здесь интегрируем тригонометрическую функцию. Применим универсальную подстановку (таблица 6, 3.1):


.

б) Здесь также применим универсальную подстановку:

.

Заметим, что в рассмотренном интеграле замену переменных пришлось применить дважды.

в) Вычисляем аналогично:

д) Рассмотрим два приема вычисления данного интеграла.

1)

.

Как видим, получили разные функции-первообразные. Это не означает, что один из использованных приемов дает неверный результат. Дело в том, что используя известные тригонометрические тождества, связывающие тангенс половинного угла с тригонометрическими функциями полного угла, имеем

Таким образом, найденные первообразные совпадают друг с другом.

Пример 5. Найти интегралы:

а)
; б)
; в)
; г)
.

Решение.

а) В этом интеграле тоже можно применить универсальную подстановку
, но поскольку входящий в подынтегральную функцию косинус – в четной степени, то рациональнее использовать рекомендации пункта 3.1.3 таблицы 6:

б) Сначала приведем все тригонометрические функции, входящие в подынтегральное выражение к одному аргументу:

В полученном интеграле можно применить универсальную подстановку, но замечаем, что подынтегральная функция не меняет знак при изменении знаков синуса и косинуса:

Следовательно, функция обладает свойствами, указанными в пункте 3.1.3 таблицы 6, поэтому наиболее удобной будет подстановка
. Имеем:

в) Если в заданной подынтегральной функции поменять знак у косинуса, то вся функция поменяет знак:

.

Значит, подынтегральная функция обладает свойством, описанным в пункте 3.1.2. Следовательно, рационально воспользоваться подстановкой
. Но прежде, как и в предыдущем примере, преобразуем подынтегральную функцию:

г) Если в заданной подынтегральной функции поменять знак у синуса, то вся функция поменяет знак, значит, имеем случай, описанный в пункте 3.1.1 таблицы 6, поэтому новой переменной нужно обозначить функцию
. Но поскольку в подынтегральном выражении не наблюдается ни наличия функции
, ни ее дифференциала, предварительно преобразуем:

Пример 6. Найти интегралы:

а)
; б)
;

в)
г)
.

Решение.

а) Данный интеграл относится к интегралам вида 3.2 таблицы 6. Поскольку синус в нечетной степени, то согласно рекомендациям, удобно заменить функцию
. Но сначала преобразуем подынтегральную функцию:

.

б) Данный интеграл относится к тому же типу, что и предыдущий, но здесь функции
и
имеют четные степени, поэтому нужно применить формулы понижения степени:
,
. Получим:

=

в) Преобразуем функцию:

г) Согласно рекомендациям 3.1.3 таблицы 6, в данном интеграле удобно сделать замену
. Получим:

Таблица 5. Иррациональные функции (R – рациональная функция своих аргументов)

Вид интеграла

Способ интегрирования

Подстановка
, где k общий знаменатель дробей …, .

Подстановка
, где k –общий знаменатель дробей

…,

2.3.

Подстановка,
,

где k – общий знаменатель дробей-показателей …,

2.4.

Подстановка
.

2.5.

Подстановка
,

2.6.

Подстановка
,
.

2.7.

Подстановка
,
.

2.8.
(дифференциальный бином ), интегрируется только в трех случаях:

а) р – целое (подстановка х = t k , где k – общий знаменатель дробей т и п );

б)
– целое (замена
= t k , где k –знаменатель дроби р );

в)
– целое (замена
= t k , где k –знаменатель дроби р ).

Пример 7. Найти интегралы:

а)
; б)
; в)
.

Решение.

а) Данный интеграл можно отнести к интегралам вида 2.1, поэтому выполним соответствующую подстановку. Напомним, что смысл замены в этом случае состоит в том, чтобы избавиться от иррациональности. А это означает, что заменить следует подкоренное выражение такой степенью новой переменной, из которой извлекались бы все имеющиеся под интегралом корни. В нашем случае это, очевидно :

Под интегралом получилась неправильная рациональная дробь. Интегрирование таких дробей предполагает, прежде всего, выделение целой части. Поэтому разделим числитель на знаменатель:

Тогда получаем
, отсюда

Замена переменной в неопределенном интеграле используется при нахождении интегралов, в которых одна из функций является производной другой функции. Пусть есть интеграл $ \int f(x) dx $, сделаем замену $ x=\phi(t) $. Отметим, что функция $ \phi(t) $ является дифференцируемой, поэтому можно найти $ dx = \phi"(t) dt $.

Теперь подставляем $ \begin{vmatrix} x = \phi(t) \\ dx = \phi"(t) dt \end{vmatrix} $ в интеграл и получаем, что:

$$ \int f(x) dx = \int f(\phi(t)) \cdot \phi"(t) dt $$

Эта и есть формула замены переменной в неопределенном интеграле .

Алгоритм метода замены переменной

Таким образом, если в задаче задан интеграл вида: $$ \int f(\phi(x)) \cdot \phi"(x) dx $$ Целесообразно выполнить замену переменной на новую: $$ t = \phi(x) $$ $$ dt = \phi"(t) dt $$

После этого интеграл будет представлен в виде, который легко взять основными методами интегрирования: $$ \int f(\phi(x)) \cdot \phi"(x) dx = \int f(t)dt $$

Не нужно забывать также вернуть замененную переменную назад к $ x $.

Примеры решений

Пример 1

Найти неопределенный интеграл методом замены переменной: $$ \int e^{3x} dx $$

Решение

Выполняем замену переменной в интеграле на $ t = 3x, dt = 3dx $:

$$ \int e^{3x} dx = \int e^t \frac{dt}{3} = \frac{1}{3} \int e^t dt = $$

Интеграл экспоненты всё такой же по таблице интегрирования, хоть вместо $ x $ написано $ t $:

$$ = \frac{1}{3} e^t + C = \frac{1}{3} e^{3x} + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int e^{3x} dx = \frac{1}{3} e^{3x} + C $$
Рассказать друзьям