Радиолюбительский rlc измеритель мостовым методом. LIMP Arta Software — программный измеритель RCL

💖 Нравится? Поделись с друзьями ссылкой
  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …

  • 29.09.2014

    Принципиальная схема передатчика показана на рис.1. Передатчик (27МГц) выдает мощность около 0,5Вт. В качестве антенны используется провод 1 м длиной. Передатчик состоит из 3-х каскадов — задающего генератора (VT1), усилителя мощности (VT2) и манипулятора (VT3). Частота задающего генератора задается кв. резонатором Q1 на частоту 27 МГц. Нагружен генератор на контур …

  • 28.09.2014

    Параметры усилителя: Суммарный диапазон воспроизводимых частот 12…20000Гц Максимальная выходная мощность СЧ-ВЧ каналов(Rн=2,7Ом, Uп=14В) 2*12Вт Максимальная выходная мощность НЧ канала(Rн=4Ом, Uп=14В) 24Вт Номинальная мощность СЧ-ВЧ каналов при КНИ 0,2% 2*8Вт Номинальная мощность НЧ канала при КНИ 0,2% 14Вт Максимальный ток потребления 8 А В данной схеме А1 — ВЧ-СЧ усилитель, а …

  • 30.09.2014

    УКВ-приемник работает в диапазоне 64-108МГц. Схема приемника основана на 2-х микросхемах: К174ХА34 и ВА5386, дополнительно в схеме присутствуют 17 конденсаторов и всего 2-а резистора. Колебательный контур один, гетеродинный. На А1 выполнен супергетеродинный УКВ-ЧМ без УНЧ. Сигнал от антенны поступает через С1 на вход ПЧ микросхемы А1(вывод12). Настройка на станцию производится …

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус - это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.

Я уже довольно длительное время пользуюсь самодельным измерителем емкости и ESR конденсаторов, собранного по схеме от автора GO с форума ProRadio. Попутно в моем использовании есть и другой, не менее популярный измеритель FCL с сайта cqham.
Сегодня в обзоре прибор, который имеет выше заявленную точность, а также фактически объединяющий оба указанных выше прибора.
Внимание, много фото, мало текста, может быть критично для пользователей с дорогим трафиком.

Стоит наверное начать с того, что данный прибор продается и в полном, т.е. уже собранном виде. Но в данном случае конструктор был выбран целенаправленно, так как это как минимум позволяет немного сэкономить средства, а как максимум, просто получить удовольствие от сборки. Причем наверное второе важнее.
Вообще я давно хотел сменить предыдущую модель C-ESR метра. В принципе он работает, но после как минимум одного ремонта стал вести себя не совсем адекватно при измерении ESR. А так как я много работаю с импульсными блоками питания (хотя это и для обычных актуально), то этот параметр для меня даже более важен, чем просто емкость.
Но в данном случае мы имеем дело не с просто измерителем C-ESR, а с прибором, который измеряет ESR + LCR, а полный список измеряемых величин выглядит еще больше, кроме того заявлена еще и неплохая точность.

Индуктивность 0,01 uH - 2000H (10 uH)
Ёмкость 200pF - 200 мФ (10pF) Разрешение 0,01pF
Сопротивление 2000mΩ- 20MΩ (150mΩ) Разрешение 0,1 мОм
Точность 0,3 – 0,5 %
Частота тестового сигнала 100 Гц, 1 кГц, 7,831 кГц
Тестовое напряжение 200 мВ
Функция калибровки автоматическая
Выходное сопротивление 40 Ом

Прибор умеет измерять -
Q - Добротность
D - Коэффициент потерь
Θ - Угол сдвига фаз
Rp - Эквивалентное параллельное сопротивление
ESR - Эквивалентное последовательное сопротивление
Xp - Эквивалентная параллельная емкость
Xs - Эквивалентная последовательная емкость
Cp - Параллельная емкость
Cs - Последовательная емкость
Lp - Параллельная индуктивность
Ls - Последовательная индуктивность

При этом измерение проводится мостовым методом при помощи четырехпроводного подключения компонента.

На мой взгляд ближайшим конкурентом является Е7-22, но он имеет меньше заявленную точность измерения (0.5-0.8%), тестовую частоту только 120 Гц и 1 кГц и тестовое напряжение 0.5 Вольта против 0.3% , 120 Гц - 1 кГц - 7.8 кГц , 0.2 Вольта у обозреваемого.

Продается данное устройство в нескольких вариантах комплектации, в обзоре использован почти самый полный вариант. Цены со страницы продавца.
1. Только сам прибор без корпуса - $21.43
2. Прибор + один вид щупов - $25.97
3. Прибор + второй вид щупов - $26.75
4. Прибор + два вида щупов - $31.29
5. Корпус к прибору. - $9.70

Упаковано все было в кучу маленьких пакетов.

Так как при доставке через посредника обычно учитывается вес посылки, то я дополнительно решил взвесить, без кабелей вышло 333 грамма, с кабелями заметно больше, 595 грамм.
В общем-то вполне можно покупать и без кабелей, особенно если есть из чего их сделать самому, так как разница только в цене комплекта выходит около 10 долларов, не считая веса.

Вот кстати с кабелей я и начну.
Упакованы в отдельные пакеты, даже просто по ощущениям вес приличный.

Первый комплект представляет из себя по сути обычные «крокодилы», но побольше размером и в пластмассе. Но на самом деле не все так просто, губки подключены к разным проводам (разъемам) чтобы реализовать корректное четырехпроводное подключения.
Кабель в меру гибкий, жесткость скорее добавляет то, что кабелей четыре, при этом они экранированные. К самому прибору щупы подключаются при помощи обычных BNC разъемов, экран подключен только на стороне BNC разъема.

Нареканий к качеству нет, единственно что не очень понравилось, отсутствие цветной маркировки около разъемов, так как сами крокодилы её имеют. В итоге для подключения надо каждый раз смотреть, какой куда подключаем. Решение - сделать метку изолентой около разъемов.

А вот второй комплект куда интереснее, он позволяет работать с мелкими компонентами, так как представляет собой пинцет.
На фото видно, что центральные жилы проводов соединяются не у концов пинцета, а на некотором расстоянии, т.е. такой вариант чуть хуже предыдущего, но и реализовать систему как у «крокодилов» здесь сложнее. Цветовой маркировки нет.
Для удобства пользования пинцет имеет направляющую, защищающую губки от сдвига друг относительно друга. Не знаю насколько долго они прослужат, но пока пользоваться довольно удобно, хотя есть и замечание - сжимать надо ближе к самим губкам, если сжимать пинцет около середины корпуса, то губки могут не сходиться полностью.

Буквально пару слов о том, что вообще такое - четырехпроводное подключение или подключение методом Кельвина. Картинки взяты , текст мой:)

Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода.
Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылазит в полный рост.
Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.

В реальной жизни это выглядит примерно так, как показано на схеме.

Кроме того, подобный способ используется к примеру и в блоках питания. Например фото из моего обзора мощного преобразователя. Здесь также можно разделить силовую цепь и цепь обратной связи, тогда падение напряжения на проводах не будет сказываться на напряжении на нагрузке.
Еще вы подобное наверняка видели в компьютерных блоках питания по цепи 3.3 Вольта (оранжевые провода). только там использована трехпроводная схема (тот самый добавочный тонкий провод к силовому разъему)

Блок питания 12 Вольт 1 Ампер, внешне неплохой. Впрочем я пробовал подключать его и просто к нагрузке, работает нормально.
Но из-за вилки с плоскими штырями использовать его неудобно, заменю на что-то другое, благо напряжение стандартное.
Реально прибор может питаться напряжением 9-15 Вольт.
Жаль, что нельзя выбрать комплектацию без БП, думаю такой БП найдется дома у многих радиолюбителей.

Основная часть комплекта была разбита на три отдельных пакета.

В одном из них самый обычный дисплей 2004 (20 символов, 4 строки) с подсветкой.

Плата прибора была тщательно обернута «воздушной» пленкой.

Здесь как раз тот случай, когда на фото в магазине плата кажется меньше, чем есть на самом деле:)
Реальные размеры 100х138мм.

Переднюю часть платы занимает место для разъемов подключения щупов.

Средняя часть - измерительный узел, переключатели, операционные усилители. Видимо предполагалась экранировка данного узла, но самого экрана в комплекте нет.

В верхней части «мозги» и питание.

В первых версиях прибора использовались линейные стабилизаторы питания, в данной версии они заменены на импульсные.
Также виден разъем для подключения блока питания и выключатель.
Замена стабилизаторов на импульсные может заметно помочь при питании от аккумуляторов. Например в комплекте к алюминиевому корпусу идет кассета на 3 аккумулятора 18650.

Управляет всем микроконтроллер . Базируется он на стареьком 8051 ядре и имеет на борту восьмиканальный 10 бит АЦП. В первых версиях прибора он был в DIP-40 корпусе, в новых версиях заменен на SMD вариант.

Также на плате имеется разъем для подключения к программатору.

Несколько отдельных фото установленных компонентов.

Снизу пусто, сюда выведены только точки пайки экрана и контрольные точки выходов стабилизаторов и преобразователей питания.

Ну и последний пакетик, с радиодеталями, которые собственно надо будет еще установить на плату.

Сюда входит плата клавиатуры, а также всякие резисторы, конденсаторы, разъемы и т.д.
Вообще конструкция довольно продумана, мелкие компоненты уже распаяны на плате, установить и запаять надо только более габаритные. Т.е. сохранен элемент «рукоприкладства», но при этом нет мазохизма для начинающих радиолюбителей в плане пайки мелких компонентов, да и «накосячить» куда сложнее. В итоге можно довольно быстро собрать устройство и получить при этом положительные впечатления от процесса.

Компоненты разложены по пакетикам, но в основном по нескольку номиналов в одном пакете.

Все резисторы, которые входят в комплект, прецизионные. На начальном этапе я на всякий случай измерил их реальное сопротивление.
В сборке помогает то, что номиналов немного, но при этом они еще и легко измеряются даже дешевым тестером, так как нет резисторов слишком близких друг к другу по номиналу.
Вверху то, что надо паять, номиналов по сути всего шесть - 40 Ом, 1, 2, 10, 16 и 100 кОм.

Вверху резисторы из подписанного пакета, они на плату не запаиваются, а используются для проверки и калибровки прибора. Сначала я думал что их надо запаивать в какие-то ответственные места, собственно потому и измерил сопротивление. Но потом выяснилось, что они «лишние», а количество (16 штук) устанавливаемых резисторов совпадает с количеством, которые были в первом пакете.

В комплект входят конденсаторы с номиналами - 3.3, 10, 22, 47 нФ, 0.1, 0.2 и 0.47мкФ.
Ниже на фото я обозначил конденсаторы так, как они обозначены на плате.

Кроме того дополнительно устанавливаются разъемы, пара электролитических конденсаторов, реле и пищалка.

Пока ждал свою посылку, поискал в интернете расширенную информацию о приборе. Выяснилось что есть не только схема, а и разные версии печатной платы, прошивки, да и вообще довольно много людей занимается данной моделью.
Схема конечно довольно условна, но общее понимание вполне дает.

Но попутно вспомнил, что примерно 8-9 лет назад, в моем же городе человек разрабатывал . Если посмотреть на схему, то можно увидеть много общего, причем разработан он был до обозреваемого.

Очень поднял настроение комментарий продавца на странице товара, сорри за гуглоперевод.
В простом виде (ну очень утрированно) он означает - платы все я проверяю, высылаю в отличном виде, потому не надо мне присылать ваши поделки, паяные горячим гвоздем на коленке с ортофосфоркой вместо флюса.
Любите вашу плату и относитесь к ней как к любимой подруге:)

Стоит отметить, что как качество изготовления платы, так и пайка компонентов на 5 баллов. Все не только аккуратно припаяно, но и тщательно промыто!
При этом все установочные места промаркированы и имеют как позиционное обозначение, так и указание номинала компонента. Вот честно, 5 баллов.

Видео распаковки и описания комплекта.

Переходим к сборке. Вообще я когда раскрыл все эти пакеты и разложил на столе, то реально хотелось сразу сесть и спаять эту конструкцию, остановило только то, что было решено сделать некую небольшую инструкцию для сборки, если вдруг это решит делать кто-то из начинающих.
Первым делом высыпаем на стол резисторы и находим те, которых больше всего, это номиналы 2 и 10 кОм.

Устанавливаем и запаиваем сначала их. Это позволит быстро убрать с платы большую часть свободных мест и облегчит потом поиск оставшихся.

Я прекрасно понимаю, что моя инструкция совсем для начинающих, потому остальную часть сборки спрячу под спойлер.

Сборка платы прибора.

Проделываем все то же самое с остальными резисторами, благо их осталось мало.

С конденсаторами аналогичная ситуация, сначала запаиваем конденсаторы 10нФ (103), так как их больше всего.



Затем номиналы 0.1 и 0.22 мкФ (104 и 224).



Ну и еще несколько конденсаторов, их буквально по 1-2 штуки.



Реле и разъемы неправильно установить крайне тяжело, пищалка имеет обозначение + как на плате, так и на самой пищалке (длинный вывод - плюс).
Пара электролитических конденсаторов также вряд ли вызовет проблемы, их по одному каждого номинала, на плате белым обозначен минус (короткий вывод).



BNC разъемы паялись на удивление хорошо. Вообще за все время сборки я не пользовался флюсом, хватало того, что был в припое.

Последний штрих, установка стоек. Здесь уже каждый делает по своему.
Вообще я не совсем понял, почему в комплекте 16 стоек. 8 длинных нужны для установки платы клавиатуры и индикатора, допустим 4 коротких снизу или сверху, но почему 8?

В итоге я сделал по своему, 8 длинных стоят сверху платы, а 4 коротких снизу. Такой вариант позволяет более удобно использовать временно плату без корпуса. При этом верхние стойки индикатора стоят винтами вверх, а короткие вкручены в них.

Пара фото спаянной платы для контроля.



После сборки мы получаем довольно красивую печатную плату, главное ничего не напутать в процессе:)

Выводы резисторов я формовал при помощи небольшого приспособления, но оказалось, что расстояние между выводами получается немного больше, чем надо. В итоге я решил резисторы немного приподнять над платой, но скорее для красоты, по крайней мере мне так больше нравится.

После пайки обязательно промываем плату, так как флюса было мало, то я обошелся спиртом.

Уже после сборки обратил внимание, что плату можно немного укоротить от базовых 138мм. Примерно до 123-124мм если оставить разъем программирования или до 114мм если его тоже вырезать. Разъемы подключения щупов в таком случае подключаются проводами в специально предназначенные отверстия. Возможно будет полезно при «упаковке» в маленький корпус.

На плате клавиатуры расположены только кнопки, причем случайно дали не 8, а 9 кнопок. Одна кнопка «слиплась» с другой.

Зато не положили в комплекте одну «гребенку», пришлось немного распотрошить «загашник», заодно достал и ответные части.
Правда в моем случае были только угловые разъемы, зато много:)
Вообще полезно иметь в хозяйстве набор таких разъемов, бывает частенько выручают.

Припаиваем разъемы к плате клавиатуры и индикатору. Кстати, подключение клавиатуры реализовано полноценно, т.е. каждой кнопке свой вывод процессора, а не использование резисторов и АЦП, как это иногда бывает.

Вот и все, комплект полностью готов.

В собранном виде компоновка напоминает мультиметр, сверху индикатор, ниже кнопки, а еще ниже разъемы.

Как можно понять из того, что я писал выше, это вторая версия прибора, по сути доработанная. Но вот вариант корпуса мне больше нравится именно у предыдущей версии и в планах делать именно такой вариант корпуса. Правда стоит такой корпус порядка 9-10 долларов, а если покупать с платой клавиатуры и передней панелью, то еще больше. Кстати у меня уже был обзор такого корпуса, где я собирал в нем регулируемый блок питания.

Мой же вариант рассчитан под установки в алюминиевый корпус.

И по задумке должен выглядеть как на этом фото. Но скажем так, дизайн это больше индивидуальное, в интернете мне попадались различные варианты.

После сборки у меня остались тестовые резисторы, кнопка и немного крепежа. Ну и блок питания со щупами конечно.

Теперь переходим к описанию возможностей прибора и специфики его работы.
При включении приветственная надпись, затем базовый рабочий экран. К слову, все заработало сразу, в приборе вообще нет никаких подстроечных элементов, собрал - включил - пользуйся.

Если у вас после сборки прибор работает, но не правильно меряет (или совсем не меряет) необходимо сбросить настройки калибровки до заводских.
Нажмите и удерживайте кнопку «M» чтобы попасть в меню (возможно оно работает со второго нажатия).
Нажмите кнопку «RNG» чтобы попасть в меню калибровок.
Нажмите кнопку «C» пять раз, чтобы сбросить настройки.
Нажмите кнопку «L» чтобы сохранить изменения.
Далее, вернитесь в меню, удерживая кнопку «M».
Нажмите кнопку «X» чтобы выйти из меню

Прибор умеет работать в четырех основных режимах:
1. Автоматический выбор. Здесь прибор сам определяет что измерять. Выбор производится по преобладающей величине. Т.е. если у компонента преобладает емкостная составляющая, то перейдет в режим измерения емкости, если индуктивная, то в режим измерения индуктивности. Иногда может ошибаться, особенно если компонент имеет несколько выраженных составляющих, например некоторые резисторы могут быть определены как индуктивность.
В помощь автоматике добавили ручной выбор -
2. Измерение емкости
3. Индуктивности
4. Сопротивления.

Также на индикатор выводится частота тестового сигнала и предел измерения. Пределы измерения несколько «нестандартны» и насчитывают аж 16 штук - 1.5, 4.5, 13, 40, 120, 360 Ом. 1, 3, 9, 10, 30, 90, 100, 300, 900 кОм и 2.7 МОм.

По умолчанию прибор стартует в автоматическом режиме измерения на частоте 1кГц.

Немного об управлении.
Под индикатором расположены восемь кнопок, он подписаны.
M - Меню, отсюда производят необходимые калибровки и сброс настроек на заводские.
RNG - Диапазон. В меню эта кнопка дает доступ к подменю калибровок.
С - Быстрая автоматическая калибровка.
L - Переключение режима индикации (первое фото). В меню - память
X - Переключение режимов работы прибора. В режиме меню - выход.
R - Уменьшение значения в режиме калибровки (X- увеличение)
Q - режим относительных измерений. Можно использовать для подбора двух одинаковых компонентов. подключаем образцовый компонент, нажимаем на кнопку, отключаем образцовый и подключаем подбираемые. На экране будет отображен процент расхождения (второе фото).
F - Выбор частоты 100 Гц - 1 кГц - 7.8 кГц.

Вид меню прибора.

Режим быстрой калибровки по нажатию кнопки С имеет два варианта:
1. При измерении емкости и индуктивности производится с разомкнутыми щупами.
2. При измерении сопротивления - с замкнутыми. В обоих вариантах прибор самокалибруется три раза по каждой из частот.
3, 4. Калибровка в режиме сопротивления, видно сопротивление щупов до калибровки и после.

В режиме измерения малых сопротивлений калибровка имеет довольно большое значение, так как возможности прибора позволяют даже «увидеть» сопротивление выводов конденсатора, не говоря о разных проводах.

Еще разные всякие тесты.

Естественно в этом режиме удобно измерять сопротивление низкоомных резисторов, а также такие «нестандартные» измерения как - сопротивление контактов кнопок, реле или разъемов.

В плане точности измерения сопротивления прибор вполне может соперничать с моим Unit 181.

При измерении индуктивности прибор также вел себя довольно неплохо. На фото индуктивность 22мкГн и три теста с разными частотами индуктивности с номиналом 150мкГн.

Вот теперь можно перейти к главному, собственно для чего в основном он мне нужен, измерению параметров конденсаторов.

Поначалу я просто тыкал разные конденсаторы и смотрел что показывает, но один (а точнее пара) меня удивил.
Я промерил пару одинаковых конденсаторов, которые были выпаяны из старой (около 20 лет) Венгерской или Чехословацкой аппаратуры. Один показал 488мкФ, а второй почти 600. Все бы ничего, но изначально это конденсаторы 470мкФ 40 Вольт.
Причем они по разному себя ведут на частоте 7.8 кГц. Вернее разница в емкости не пропорциональна друг с другом.

Затем я взял еще один конденсатор (вроде Матсушита), купленный давно, но так и лежащий в загашнике.
Прибор смог нормально измерить емкость на частоте 100 Гц и 1 кГц, но на высокой частоте емкость отобразил несколько некорректно. Вообще на частоте 7.8 кГц прибор ведет иногда себя немного странно, иногда завышая емкость относительно первых двух частот. Иногда (при измерении емких конденсаторов) сваливается в режим ----OL---- или показывает превышение более 20мФ.

Кстати, разрешение прибора позволяет даже увидеть разницу места подключения к выводу. Да же на примере одного вывода видно, как меняется внутреннее сопротивление. Это я собственно к тому, что меня иногда спрашивают, а можно подключить конденсатор на проводах, если он не влазит на место. Подключить можно, но характеристики немного снизятся.

Как вы понимаете, просто измерять конденсаторы неинтересно, потому я попросил у товарища его Е7-22. Попутно заметил, что даже управление приборами имеет очень много общего.

Первым делом шли пленочные конденсаторы. Внизу прецизионный 1% конденсатор с заявленной емкостью 0.39025 мкФ.

1, 2. Полимерный конденсатор емкостью 100мкФ
3, 4. А вот с измерением больших емкостей у Е7-22 есть проблемы. Обозреваемый прибор без проблем измеряет емкость в 10000мкФ на частоте 1 кГц, Е7-22 даже на 4700 у меня уже выдавал перегрузку.

1, 2. Capxcon серии KF емкостью 330 мкФ.
3, 4. Конденсатор той же фирмы (якобы), просто пролежавший в ящике несколько лет и вспухший.

А это уже просто ради любопытства. Пара конденсаторов из моей старой материнской платы, которая отработала 24/7 около 10 лет.
1. 2200мкФ
2. 1000мкФ

Емкость у первого конденсатора заметно упала, но вот внутреннее сопротивление в порядке. Чаще бывает наоборот, емкость остается прежней, а внутреннее сопротивление растет.


Видео процесса работы и тестов.

Если у вас есть еще предложения тестов, то пока у меня на руках сразу два прибора, то мог бы поэкспериментировать. Мне же в голову пришло только проверить размах тестового сигнала.
Ниже показан размах тестового сигнала относительно земли. Верхние два - обозреваемый на частотах 100 Гц и 7.8. кГц, нижние - Е7-22 на частотах 120 Гц и 1 кГц. Разница около 2.5 раза.

Выше я писал, что в планах применять корпус где индикатор расположен не параллельно поверхности, а перпендикулярно.
Но в процессе выяснилось, что индикатор хоть применен и относительно неплохой, но ориентирован он именно на то, что смотреть будут спереди или спереди-снизу.

Под большими углами, а тем более при взгляде сверху или сбоку изображение пропадает или начинает инвертироваться.

Собственно потому я решил наконец-то попробовать дисплей изготовленный по технологии VATN. Вообще хотелось OLED, к я уже делал , но 2004 купить почти нереально, а как потом выяснилось, VATN также мало где продают в онлайне.
В итоге пришлось идти в наш оффлайновый магазин, и покупать там.
На выбор было три модели, с синим, зеленым и белым шрифтом, мне больше понравился с белым, модель - , цена около 15-16 долларов, . Производитель WINSTAR.

На первый взгляд индикаторы мало отличаются друг от друга, по крайней мере размер платы полностью идентичен - 98х60 мм.

Более подробно о индикаторе и нюансах подключения

Снизу есть небольшая разница, но на вид несущественная.

Новый индикатор примерно на 0.5мм тоньше.

Общий принцип подключения практически одинаков, за исключением нескольких нюансов, о которых я расскажу ниже.

Для начала отличие в том, что дисплеям VATN для регулировки контрастности надо отрицательное напряжение, потому на плате смонтирован преобразователь напряжения на базе известной 7660, обзор которой я также делал.
Рядом есть место для подстроечного резистора. Средний вывод идет на контакт регулировки контраста, два других на + 5 и - 5 Вольт соответственно.

Сначала я хотел установить подстроечный резистор, отдав полностью регулировку плате индикатора, но потом решил не выкусывать лишний контакт разъема и просто включил резистор так, чтобы один контакт шел на стандартный вывод регулировки контрастности (номер 3 на общем разъеме), а второй на выход отрицательных 5 Вольт.
Отрегулировал изображение, выпаял подстроечный резистор, получилось что надо было постоянный резистор с сопротивлением 2.6 кОм, ближайший под рукой был 2.49кОм, его и запаял уже «стационарно».

Но это оказалось не все.
А теперь Внимание , 15 контакт разъема у привычных индикаторов это плюсовой вывод подсветки, здесь это выход отрицательного напряжения и ни в коем случае нельзя просто менять индикатор один на другой, в итоге вы просто спалите его.

Я же сделал немного по другому, из 16 контактов запаял только 14.
Контакт 16 это минус подсветки, а плюс подключен ко входным +5 Вольт, потому просто кинул перемычку между минусом подсветки и общим проводом платы индикатора.

А здесь внимание второй раз!
Изначально я думал просто оставить 16 контакт на месте, так как у обычного индикатора туда выведен минус подсветки, рассудив что какая разница где подключать к общему проводу. И оно бы нормально работало, если бы не одно НО.
У платы прибора индикатор питается от + 5 Вольт, а подсветка от -5 Вольт. Потому подключив таким образом новый индикатор я буквально через 10-20 секунд случайно заметил что у него начала дико греться подсветка. Подключившись тестером, выяснил, что на подсветку шло не 5, а 10 Вольт (+5 и -5).
Потому с данным прибором пришлось минус подсветки подключить к общему контакту платы.

Меняем индикатор и пробуем.
Ну что сказать, это конечно не OLED, но и далеко не обычный ЖК.
Из минусов, он больше ориентирован на то, что на него будут смотреть как угодно, только не снизу, в таком варианте от вспышки он «слепнет».

Попутно измерил ток потребления со старым индикатором и новым.
1. старый - 48мА все вместе или 12 мА только индикатор.
2. новый - 153 мА или 120 мА только индикатор.

Да, для батарейного вариант куда выгоднее обычный ЖК индикатор.


Если смотреть сверху, т.е. как я и планировал, то видимость хорошая, но начинают вылазить неактивные пиксели.
От последнего можно легко избавиться, но тогда при прямом взгляде показывает тускло, я выставил нечто среднее.

Углы обзора конечно на голову выше, чем у обычного ЖК, изображение читается даже при почти взгляде параллельно экрану.
Но вылез интересный эффект (последнее фото). Если плавно поворачивать экран от себя, то в какой-то момент (примерно при 30 градусов поворота) изображение бледнеет, пытается инвертироваться, а при дальнейшем повороте почти резко опять становится нормальным. Потому для вертикальной установки дисплей подходит отлично, но при горизонтальной иногда может раздражать.

Вот в таком положении по задумке он должен у меня использоваться, здесь претензий нет.

Дальше я планировал «поселить» его, для чего купил корпус Z1. На первый взгляд все аккуратно.

Но корпус очень большой, реально раза в полтора больше, чем требуется, а хотелось бы что-то более компактное.
Размеры корпуса (наружные) - 188 ширина, 70 высота и 197 глубина. Вот последний размер и хотелось бы уменьшить до 140-150, хоть бери и пили:(
Может кто знает подходящие корпуса?

Ну и наверное обзор был бы неполным, если бы я не показал то, чем пользовался до последнего времени.

Калибровка довольно обширная, чтобы описать, я догоню иногда.
ForenMenber Blueskull любезно перевел 6-ю главу с китайского на английский для меня.
Насколько это полезно сейчас, мне придется попробовать, но мой счетчик, по-видимому, хорошо откалиброван, я немного застенчив.

Во-первых, я рассмотрю включенные опорные резисторы. У меня есть более точный омметр (DMM PM 2534)
(В процессе строительства!)

6. Калибровка счетчика LCR
Существует 7 калибровочных меню, которые должны быть откалиброваны, всего 10 (15?) Параметров, соответственно M0 ~ M8 и «M3.», «M5.», «M6.», «M7.» И «M8.».

M0 - смещение нуля при 100 Гц, единица LSB, по умолчанию - 20.
M1 - смещение нуля на 1 кГц, единица LSB, по умолчанию - 20.
M2 - нулевое смещение на 7.8 кГц, единица LSB, по умолчанию - 14.
M3 - фазовый компенсатор для преобразователя VI в диапазоне 20 Ом, единица измерения 0,001rad, по умолчанию - 0.
M4 является фазовым компенсатором для преобразователя VI в диапазоне 1 кОм, единица измерения 0,001rad, по умолчанию - 0.
M5 - фазовый компенсатор для преобразователя VI в диапазоне 10 кОм, единица измерения 0,001rad, по умолчанию - 0.
M6 - фазовый компенсатор для преобразователя VI в диапазоне 100 кОм, единица измерения 0,001rad, по умолчанию - 20.
M7 - компенсация фазы фазы второго этапа, единица измерения 0,001rad, по умолчанию - 16.
M8 - фазовая компенсация фазы PGA первой ступени, единица измерения 0,001rad, по умолчанию - 20.

« M3.» - калибровка нижнего рычага для преобразователя VI при 20 Ом, единица измерения 1%, по умолчанию - 0.
« M4.» - калибровка нижнего рычага для преобразователя VI при 1 кОм, единица измерения 1%, по умолчанию - 0.
« M5.» - калибровка нижнего рычага для преобразователя VI при 10 кОм, единица измерения 1%, по умолчанию - 0.
« M6.» - калибровка нижнего рычага для преобразователя VI при 100 кОм, единица измерения 1%, по умолчанию - 0.
« M7.» - вторая калибровка усиления PGA, единица измерения 1%, по умолчанию - 0.
« M8.» - первая калибровка усиления PGA, единица измерения 1%, по умолчанию - 0.

В версии LCD1602 эти параметры называются Z0, Z1, Z2, R1X, R2X, R3X, R4X, G1X, G2X, R1, R2, R3, R4, G1 и G2.

Чтобы восстановить заводские настройки, нажмите кнопку C 5 раз, чтобы восстановить настройки по умолчанию, затем нажмите клавишу L для сохранения.

Перед калибровкой необходимо подготовить несколько резисторов:

Для калибровки преобразователя VI необходимы резисторы 20R, 1k, 10k и 100k.

Для калибровки PGA необходимы резисторы 3.3k и 10k (примечание переводчика: вам также нужны 330R и 100R).

При 1 кГц и 7.8 кГц подключите резисторы 20R, 1k, 10k и 100k, когда калибровка соответствующих диапазонов, настройка усиления верхнего и нижнего рычагов должна быть идентичной для калибровки амплитуды и фазы. Нажмите клавишу M + R, чтобы войти в контрольное меню, если отображается «1, 1», тогда обе руки сбалансированы, а коэффициенты усиления идентичны. Если отображается «0, 1» или «1, 0», амплитуда сигнала неверна.

Калибровка смещения (M0, M1, M2)

Обеспечение нулевого нулевого смещения является основанием для измерения точности, и, следовательно, рекомендуется сделать первый шаг в калибровке. Используя заданную спецификацию, нулевые точки смещения также идентичны для отдельных сборок, поэтому можно использовать предустановленные значения. В случае необходимости калибровки сделайте следующее (примечание: переводчик добавил это предложение):

Для M0 при 100 Гц:

1, Установите f = 100 Гц, диапазон = 100 тыс.
2, Подключите 1% резистор 10R как DUT
3, Чтение значения R из меню 1

В диапазоне 10k (100 кГц), измерение резистора 10R приведет к большей ошибке, и это нормально. Если ошибка выше 2%, вам нужно настроить M0, чтобы довести ее до 2%.

M1 и M2 могут быть откалиброваны с использованием того же метода на разных частотах (1 кГц и 7,8 кГц).

Зуммер будет издавать звуковой сигнал всякий раз, когда нажата клавиша, что приводит к увеличению тока ввода-вывода через MCU и возникновению ошибки. Пожалуйста, прочитайте значения после того, как зуммер прекратил звуковой сигнал.

Фазовая компенсация для преобразователя VI и PGA (M3 ~ M8)

Установите f = 7.8 кГц, диапазон = 1k

1, Подключите резистор 20R в качестве DUT, измерьте Q в диапазоне 20R, запишите Q. Вычитайте Q с Q0, установите M3 на это значение (примечание: Q0 должно быть Q-показанием с DUT с разомкнутой цепью. Умножьте это число на 1000).
2, Соедините резистор 1k как DUT, измерьте Q в диапазоне 1k, запишите Q. Вычитайте Q с Q0, установите M4 на это значение.
3, Соедините резистор 10k как DUT, измерьте Q в диапазоне 10k, запишите Q. Вычитайте Q с Q0, установите M5 на это значение.
4, Соедините резистор 10k как DUT, измерьте Q в диапазоне 100k, запишите Q. Вычитайте Q с Q0, установите M6 на это значение.
5, Соедините резистор 330R как DUT, измерьте Q в диапазоне 1k, запишите Q. Вычитайте Q с Q0, установите M7 на это значение. Это калибрует коэффициент усиления PGA = 3x.
6, Соедините резистор 100R как DUT, измерьте Q в диапазоне 1k, запишите Q. Вычитайте Q с Q0, установите M8 на это значение. Это калибрует коэффициент усиления PGA = 9x.

Например, чтобы получить M8, измерьте резистор 100R, запишите Q. Например, Q = 0.020, затем установите M8 = 20.

Примечание: на частоте 1 кГц, 1 кГц, когда DUT находится между 640R ~ 1k, это (1, 1) (примечание: WTF? Я не могу понять, что он имеет в виду), когда R = 440R ~ 640R, он находится в области гистерезиса, Когда R = 280R ~ 440R, оно (0, 1), когда R = 250R ~ 280R, находится в области гистерезиса. Когда R = 85R ~ 250R, это (0, 2), то R = 75R ~ 85R находится в режиме гистерезиса, когда R <75, это (0, 3).

Калибровка амплитуды для преобразователя VI и PGA (точка M3 до точки M8)

Умножьте значения ошибок на 10000.

В соответствующих диапазонах на 1 кГц подключите резисторы 20R, 1k, 10k и 100k, измерьте ошибку, затем сохраните калибровочные значения до точки M3 до точки M8 соответственно.

Этот процесс аналогичен описанному ранее.

На этом пока все, в планах сделать небольшое продолжение, где я собираюсь все таки засунуть все это в корпус, а заодно рассказать о впечатлениях после длительного пользования.

На данный момент я пользуюсь прибором несколько дней и у меня пока только хорошие впечатления.
Из преимуществ:
1. Удовольствие от процесса сборки
2. Отличное качество печатной платы и пайки.
3. Высокая точность работы
4. Наличие частоты 7.8 кГц и больший диапазон измерений на частоте 1 кГц чем у Е7-22.
5. Четырехпроводная схема подключения
6. Малое потребление.
7. Отсутствие необходимости в отладке, с базовой калибровкой декларируют точность 0.5%, при ручной калибровке пишут о 0.3%
8. Довольно большое сообщество пользователей, хотя и иностранных.
9. Низкая цена.

Из недостатков
1. В некоторых ситуациях не совсем адекватные показания на частоте 7.8 кГц. Но здесь я буду еще пробовать.

Суммарно могу сказать, что обозреваемый прибор как функционально, так и в плане точности не хуже, а скорее всего даже лучше, чем более дорогой Е7-22. Но есть конечно и разница, Е7-22 можно поверить, а обозреваемый только для личного пользования.

Покупал через посредника , стоимость набора около 32 доллара, стоимость доставки зависит от страны, в обзоре указан вес составных частей.

Как обычно жду вопросов, советов, предложений тестов и просто комментариев, надеюсь что обзор был полезен.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +85 Добавить в избранное Обзор понравился +127 +235

Программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов.
Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штеккера, резистор, провода и щупы).

Download the single-frequency version - Скачать программу v1.11 (архив 175 кБ, одна рабочая частота).
Download the double-frequency version - Скачать программу v2.16 (архив 174 кБ, две рабочих частоты).

Это еще один вариант, пополняющий и без того обширную коллекцию аналогичных программ. Здесь не воплощены все задумки, работа над которыми продолжается. Функционирование «основы» вы можете оценить прямо сейчас.

В основу заложен общеизвестный принцип определения амплитудных и фазовых соотношений между сигналами с известного (образцовогоо) компонента, и с компонента, параметры которого надо определить. В качестве тестового используется сигнал синусоидальной формы, генерируемый звуковой картой. В первой версии программы использовалась только одна фиксированная частота 11025 Гц, в следующей версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей.

Выбор именно этой частоты (четверть от частоты сэмлинга) является главной «инновацией», отличающей этот проект от остальных. На такой частоте алгоритм интегрирования по-Фурье (не путать с БПФ - быстрым преобразованием Фурье) максимально упрощается, а нежелательные побочные эффекты, приводящие к росту шума в измеряемом параметре, полностью пропадают. В итоге кардинально улучшается быстродействие и снижается разброс показаний (особо ярко выраженный на краях диапазонов). Это позволяет расширить диапазоны измерений и обойтись только одним образцовым элементом (резистором).

Собрав схему согласно рисунку и установив регуляторы уровня Windows в оптимальное положение, а также произведя начальную калибровку по закороченным между собой щупам («Cal.0»), можно сразу же приступать к измерениям. С такой калибровкой без труда ловятся низкие сопротивления, в том числе ESR, порядка 0,001 ом, а СКО (среднеквадратическое отклонение) результатов измерений в этом случае составляет порядка 0,0003 ом. Если зафиксировать положение проводов (чтобы не менялась их индуктивность), то можно «ловить» индуктивности порядка 5 нГн. Калибровку «Cal.0» желательно проводить после каждого старта программы, поскольку положение регуляторов уровня в среде Windows может быть, в общем случае, непредсказуемым.

Чтобы расширить диапазон измерений в область больших R, L и малых C, требуется учитывать входное сопротивление звуковой карты. Для этого служит кнопка «Cal.^», нажимать на которую надо при разомкнутых между собой щупах. После такой калибровки можно достичь следующих диапазонов измерений (при нормировании случайной составляющей погрешности на краях диапазонов на уровне 10%):

  • по R - 0.01 ом... 3 Мом,
  • по L - 100 нГн... 100 Гн,
  • по C - 10 пФ... 10 000 мкФ (для версии с двумя рабочими частотами)

Минимальная погрешность измерения определяется допуском образцового резистора. Если предполагается использование обычного ширпотребовского резистора (и даже с номиналом, отличным от указанного), в программе предусмотрена возможность его калибровки. Соответствующая кнопка «Cal.R» становится активной при переходе в режим «Ref.» Величина резистора, который будет использоваться в качестве эталонного, задается в файле *.ini в качестве значения параметра «CE_real». После калибровки уточненные характеристики образцового резистора запишутся в виде новых значений параметров «CR_real» и «CR_imag» (в 2-х частотной версии параметры измеряются на двух частотах).

С регуляторами уровня программа напрямую не работает - пользуйтесь стандартным микшером Windows или аналогичным. Шкала «Level» служит для настройки оптимального положения регуляторов. Здесь можно порекомендовать такую методику настройки:

1. Определиться, какой регулятор отвечают за уровень воспроизведения, а какой - за уровень записи. Остальные регуляторы желательно заглушить для минимизации вносимых ими шумов. Регуляторы балланса - в среднее положение.
2. Исключить прегрузку по выходу. Для этого, установив регулятор записи в положение ниже среднего, с помощью регулятора воспроизведения найти ту точку, где ограничивается рост столбика «Level», а затем немного отступить назад. Скорее всего перегрузки вообще не будет, но для надежности регулятор лучше не выводить на отметку «макс».
3. Исключить прегрузку по входу - регулятором уровня записи сделать так, чтобы столбик «Level» не доходил до конца шкалы (оптимальное положение - 70...90%) в отсутствии измеряемого компонента, т.е. при разомкнутых щупах.
4. Замыкание щупов между собой не должно приводить к сильной просадке уровня. Если это так, то выходные усилители звуковой карты слишком слабы для данной задачи (иногда решается настройками карты).

Требования к системе

  • ОС семейства Windows (тестировалась под Windows XP),
  • поддержка звука 44,1 ksps, 16 bit, stereo,
  • наличие одного аудио устройства в системе (если окажется несколько, то программа будет работать с первым из них, и не факт, что у веб-камеры окажутся гнезда «Line In» и «Line Out»).

Особенности измерений, или чтобы не попасть впростак

Любой измерительный инструмент требует знания его возможностей и умения правильно интерпретировать результат. Например, при использовании мультиметра стоит задуматься, а какое переменное напряжение он, собственно, меряет (при отличии формы от синусоидальной)?

В 2-х частотной версии для измерения больших емкостей и индуктивностей используется низкая (1,1 кГц) частота. Граница перехода отмечена сменой цвета шкалы с зеленого на желтый. Аналогично меняется и цвет показаний - с зеленого на желтый при переходе к измерениям на низкой частоте.

Стереофонический вход звуковой карты позволяет организовать «четырехпроводную» схему подключения только для измеряемого компонента, схема же подключения эталонного резистора остается «двухпроводной». При таком раскладе любая нестабильность контакта разъема (в нашем случае - земляного) может исказить результат измерения. Ситуацию спасает относительно большая величина сопротивления эталонного резистора по сравнению к нестабильностью сопротивления контакта - 100 ом против долей ома.

И последнее. Если измеряемый компонет - конденсатор, то он может оказаться заряженным! Даже разряженный электролитический конденсатор со временем может «собрать» оставшийся заряд. Схема не имеет защиты, так что вы рискуете вывести из строя свою звуковую карту, а в худшем случае - сам компьютер. Сказанное относится и к тестированию компонетов в устройстве, тем более - необесточенном.

Измерители емкости и индуктивности, описанные в радиолюбительских журналах, довольно сложны схе­мотехнически, часто имеют определенные недостатки (в частности по пределам измерения). Кроме того, не­редки случаи, когда эти схемы измерителей выполне­ны с ошибками. Исходя из этого, я решил повторить схему широкополосного измерителя R, С, L, описанно­го в (все-таки книга с красивым названием, и цена этой книги по тем временам не очень маленькая). Я уже думал, что напрасно потерял время, изготавливая измеритель R, С, L , но потом, поразмыслив, создал свой измеритель R, С, L, использовав идею измерения R, С, L, изложенную в .

Схема простого измерителя RCL изображена на рис. 1. Прибор позволяет измерять сопротивления ре­зисторов от 1 Ом до 10 МОм в семи диапазонах (10; 100 Ом; 1; 10; 100 кОм; 1; 10 МОм), емкости конденса­торов от 100 пФ до 1000 мкФ (пределы -1000 пФ; 0,01; 0,1; 1; 10; 100; 1000 мкФ) и индуктивности катушек от 10 мГ до 1000 Г (пределы -100 мГ; 0,1; 1; 10; 100; 1000 Г). Питание измерителя R, С, L осуществляется от вторич­ной обмотки трансформатора Т1. Напряжение на этой обмотке приблизительно 18 В. Провод вторичной об­мотки трансформатора Т1 должен быть рассчитан на ток 1 А, первичной - на 0,1 А. Трансформатор Т1 дол­жен быть рассчитан на мощность не менее 20 Вт.

Схема прибора представляет собой измерительный мост переменного тока. Индикатором баланса моста служит вольтметр переменного тока Р1 с пределом из­мерения не ниже 20 В (лучше использовать цифровой вольтметр, измеряющий десятые, а еще лучше - сотые доли Вольта), подключаемый к клеммам ХЗ, Х4, или микроамперметр (миллиамперметр) постоянного тока Р2, подключенный к измерительной диагонали моста через гасящий резистор R12 (его сопротивление под­бирается экспериментально - при напряжении 18 В стрелка микроамперметра должна отклоняться на всю шкалу) и диодный мост VD1 ...VD4.

Род измерений выбирается переключателем SA3 на 3 положения: I (крайнее левое положение - измерение сопротивлений) - "R"; II - измерение емкостей - "С"; III - измерение индуктивностей - "L". В отдельных случаях при измерениях 0 прибора Р1 (Р2) может сохраняться, скажем, от отметки 4 шкалы переменного резистора R11 до отметки 6. В этом слу­чае величина измеряемого параметра равна 5. В режиме измерения сопротивлений Rx = R1 (R2...R7) R11 /R10. В режиме измерения емкости Сх = С1 R11 / R1 (R2...R7). В режиме измерения индуктивности Lx = С1 R11 R1 (R2...R7).

Применить подключение резистора сопротивлени­ем 1 Ом на переключатель SA1 для увеличения диа­пазона измерений не представляется возможным, т.к. на этом резисторе будет сравнительно малое напря­жение (приблизительно 1 В)и уравновесить мост пе­ременным резистором R11 сопротивлением 4,7 кОм практически невозможно.

Емкость конденсатора С1 применена сравнитель­но большой (2,5 мкФ) по похожей причине - если в качестве конденсатора С1 применить конденсатор с меньшей емкостью, его емкостное сопротивление бу­дет сравнительно большим на низкой частоте (50 Гц). Даже при емкости конденсатора С1 - 2,5 мкФ, изме­рение индуктивностей в положении 1 переключателя SA1 не представляется возможным. Точность измерения индуктивности предлагаемым измерителем R, С, L я не смог определить, так как у меня нет образцовых катушек сравнительно большой индуктивности, но не верить вышеприведенной фор­муле определения индуктивности Lx оснований нет.

К слову будь сказано, при измерении индуктивно­сти 0 прибор не показывает. При вращении движка резистора R11 напряжение на измерительной диаго­нали моста уменьшается, доходит до определенного уровня, а затем начинает увеличиваться. То положе­ние движка резистора R11, при котором прибор пока­зывает минимальное напряжение, и является величи­ной индуктивности Lx.

Я думаю, вышеприведенное обстоятельство объяс­няется тем, что для уравновешивания моста не учте­но активное сопротивление катушки индуктивности. Но, с другой стороны, это неважно, т.к. активное со­противление катушки не влияет на ее индуктивность и его спокойно можно измерить обычным омметром.

Погрешность измерения предлагаемого прибора напрямую зависит от самого конструктора. Тщательно подобрав образцовые резисторы R1 ...R7, конденсатор С1 и правильно расчертив шкалу переменного резис­тора R11, можно свободно добиться того, чтобы по­грешность прибора не превышала 2%.

Переменный резистор R11 - проволочный, жела­тельно открытой конструкции, чтобы можно было за­чищать от пыли и загрязнений резистивную поверх­ность. Я, например, в качестве резистора R11 приме­нил переменный проволочный резистор типа ППБ - ЗА. Конденсатор С1 составлен из двух конденсаторов - емкостью 1 мкФ и 1,5 мкФ, включенных параллельно.

Градуировка шкалы переменного резистора R11 производится при включении переключателя SA3 в по­ложение "R", a SA1 - в положение "3". К зажимам Х1, Х2 поочередно подключают образцовые резисторы со­противлением 100, 200, 300 Ом... 1 кОм и при каж­дом уравновешивании моста на шкале переменного резистора делают отметку. Промежутки между отмет­ками делят на 10 равных частей.

Конденсатор С1 подбирают, установив: SA1 - в по­ложение "5", SA3 - в положение "С". К зажимам моста Х1, Х2 подключают образцовый конденсатор емкос­тью 0,01 мкФ, движок переменного резистора R11 должен быть установлен на отметке "1" и при этом мост должен быть сбалансирован (0 на приборе). Калибровку моста в режиме измерения индуктив­ности можно не делать. Для удобства работы с измерителем R, С, L просто необходимо на лицевую панель наклеить таблицу с ди­апазонами измерений R, С, L. Внешний вид лицевой панели измерителя R, С, L показан на рис. 2.

Литература: [i]
1. Боровский В.П., Косенко В.И., Михайленко В.М., Партала О.Н.
2. Справочник по схемотехнике для радиолю бителя. - Киев. Техника. 1987 г.

Рассказать друзьям