Токи высокой частоты и высокого напряжения. Изменения, развивающиеся в организме при работах с токами высокой частоты Чувствительность к току высокой частоты

💖 Нравится? Поделись с друзьями ссылкой
ЛЕКЦИЯ 17 ФИЗИЧЕСКИЕ ПРОЦЕССЫ, ПРОИСХОДЯЩИЕ В ТКАНЯХ ОРГАНИЗМА ПОД ВОЗДЕЙСТВИЕМ ТОКОВ И ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

ЛЕКЦИЯ 17 ФИЗИЧЕСКИЕ ПРОЦЕССЫ, ПРОИСХОДЯЩИЕ В ТКАНЯХ ОРГАНИЗМА ПОД ВОЗДЕЙСТВИЕМ ТОКОВ И ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

1. Действие постоянного тока.

2. Действие переменного тока (НЧ, ЗЧ, УЗЧ). Пороговые значения.

3. Действие высокочастотного тока.

4. Действие магнитных полей.

5. Действие постоянного электрического поля.

6. Действие переменного электрического поля (УВЧ).

7. Действие электромагнитных волн (СВЧ).

8. Задачи.

Различные виды биологических тканей обладают различными электрическими свойствами. Одни ткани являются диэлектриками, а другие проводниками. В состав организма входят биологические жидкости (электролиты), содержащие большое количество ионов, которые участвуют в различного рода обменных процессах. По этим причинам свойства биологических тканей существенно изменяются под воздействием токов и электромагнитных полей.

17.1. Действие постоянного тока

Физиологическое действие постоянного электрического тока связано с двумя физическими процессами.

Во-первых, постоянное электрическое поле вызывает направленное движение ионов к полюсам. Ускоряющему действию электрических сил противодействуют силы сопротивления, возникающие при столкновении ионов с другими частицами. В результате устанавливается некоторая средняя скорость перемещения ионов, которая, как показывает опыт, пропорциональна напряженности электрического поля в данном месте:

Коэффициент пропорциональности b называется подвижностью иона.

Подвижность иона численно равна средней скорости его перемещения в данной среде при напряженности поля 1 В/м.

Обычно используют внесистемную единицу подвижности - см/час.

Величина подвижности зависит от вида иона и среды, в которой он движется. Приведем значения подвижности некоторых ионов в водной среде:

Различия в подвижностях ионов приводят к их разделению, изменению концентраций, а также к образованию местных пространственных зарядов.

Во-вторых, постоянное электрическое поле оказывает ориентирующее действие на дипольные молекулы и вызывает электронную поляризацию молекул, не обладающих дипольным моментом. В результате изменяется содержание ионов в компартментах различных тканей.

Эти электрокинетические процессы и определяют физиологическую реакцию организма на постоянный ток.

Воздействие постоянным электрическим током на те или иные области тела человека осуществляется с помощью электродов, наложенных на соответствующие участки поверхности тела.

На электродах, через которые к пациенту подводится ток, происходит выделение веществ, среди которых есть и химически активные. Для предотвращения химического ожога подлежащих тканей электроды накладываются через влажные прокладки.

Физиологический эффект, производимый постоянным током, зависит от его плотности и времени действия. Для предотвращения ионного дисбаланса тканей продолжительность процедур с применением постоянного тока обычно не превышает 20-30 минут.

Все аппараты для проведения лечебных процедур постоянным током имеют на передней панели миллиамперметр и ручку потенциометра для установки требуемого значения силы тока.

К основным физиотерапевтическим процедурам, использующим постоянный ток, относятся гальванизация и электрофорез.

Гальванизация - лечебное воздействие на организм постоянным электрическим током невысокого напряжения и небольшой силы.

Название метода связано с устаревшим названием постоянного тока - «гальванический ток».

При гальванизации различных участков тела используют следующие токи:

В результате гальванизации в тканях активизируются системы регуляции локального кровотока. Происходит расширение просвета дермальных сосудов и возникает гиперемия кожных покровов. Расширение капилляров и повышение проницаемости их стенок происходит не только в месте наложения электродов, но и в глубоко расположенных тканях.

Электрофорез - введение лекарственного вещества через кожу или слизистые оболочки с помощью постоянного тока.

Для этого под соответствующий электрод кладут прокладки, смоченные лекарственным препаратом. Лекарство вводят с того полюса, зарядом которого обладают его ионы. Через катод вводят анионы (йод, гепарин, бром), а через анод - катионы (Na, Ca, новокаин).

Электрофорез - достаточно длительная процедура, что связано с низкой подвижностью ионов. Сопутствующим эффектом этой процедуры является гальванизация.

Расположение электродов на теле пациента и продолжительность процедуры определяются местом залегания ткани, на которую оказывается лечебное воздействие.

17.2. Действие переменного тока (НЧ, ЗЧ, УЗЧ). Пороговые значения

Переменный ток проводимости представляет собой колебательные движения ионов.

Действие, которое оказывает на организм переменный (синусоидальный) ток, зависит от частоты и амплитуды тока. В медицине принята следующая классификация частот переменного тока.

Как и постоянный ток, переменный ток оказывает на ткани организма раздражающее действие. Возбуждение нервной и мышечной тканей постоянным или переменным током (ν ниже 100 кГц) может стать причиной электротравмы. Процессы возбуждения в ритме, не свойственном организму, нарушают нормальную жизнедеятельность. Особенно опасны такие нарушения в сердце, дыхательной мускулатуре, центральной нервной системе. Наибольшую опасность представляют частоты 30-300 Гц. Следует понимать, что поражающее действие переменного тока определяется не напряжением, а зарядом, проходящим за половину периода. Это связано с тем, что в основе действия тока на ткани лежит их поляризация, степень которой пропорциональна величине прошедшего заряда. Вот почему для токов высокой частоты (полупериод очень мал) поражающее действие не наступает даже при токах в десятки ампер. В то время как ток частоты 50 Гц может стать причиной гибели человека при силе 0,1 А.

С токами НЧ- и ЗЧ-диапазонов врач встречается не только как с травмирующим фактором. Их применяют для электродиагностики и электростимуляции биологических систем. Как правило, в этих целях используют не синусоидальные, а импульсные токи.

Пороговые значения тока

Мы знаем (лекция 3), что восприятие звука характеризуется двумя пороговыми значениями - порогом слышимости и порогом болевого ощущения. Аналогичные величины используются и для переменного тока НЧ- и ЗЧ-диапазонов.

Порог ощутимого тока - минимальная сила тока, раздражающее действие которого ощущает «средний» человек.

Реакция человека на ток определяется не только его силой и частотой, но и областью, через которую ток проходит. Зависимость порога ощутимого тока на участке «предплечье - кисть» для среднего мужчины показана на рис. 17.1 (кривая 1). Для частоты

Рис. 17.1. Зависимость среднего значения порога ощутимого тока (1) и порога неотпускающего тока (2) от частоты

50 Гц (промышленный ток) эта величина составляет приблизительно 1 мА.

Промышленный ток 3 мА вызывает легкое покалывание в пальцах, прикасающихся к проводнику. Ток 3-5 мА вызывает раздражающее ощущение во всей кисти руки. Ток 8-10 мА приводит к непроизвольному сокращению мышц кисти и предплечья. При токе порядка 15 мА непроизвольные мышечные сокращения приобретают такую силу, что человек не в состоянии разжать кисть, держащую проводник.

Порог неотпускающего тока - минимальная сила тока, вызывающая у «среднего» человека такое сгибание суставов, при котором человек не может самостоятельно освободиться от проводника - источника напряжения.

Зависимость порога неотпускающего тока для среднего мужчины показана на рис. 17.1 (кривая 2). У детей и женщин пороговые значения обычно ниже.

Превышение порога неотпускающего тока может быть губительным для человека (паралич дыхательных мышц, фибрилляция сердца).

17.3. Действие высокочастотного тока

На частотах свыше 100 кГц раздражающее действие переменного тока полностью прекращается. Это связано прежде всего с тем, что на таких частотах воротные процессы ионных каналов не успевают

срабатывать и внутриклеточный состав не изменяется. Основным первичным эффектом в этом случае является тепловое воздействие. (Постоянный ток, токи НЧ и ЗЧ для нагревания тканей непригодны, так как их использование при больших значениях может привести к электролизу и разрушению).

Удельная тепловая мощность, выделяющаяся в тканях, определяется по формуле (10.10): q = j 2 p, где ρ - удельное сопротивление ткани, а j - плотность тока в ней. Сила тока, а следовательно, и его плотность, зависят от импеданса ткани, который, в свою очередь, зависит от частоты (см. лекцию 15). Поэтому подбором частоты тока можно добиться селективного теплового воздействия на ткани нужного вида.

Преимущества лечебного прогревания ВЧ-токами перед обычной грелкой очевидны:

Теплота выделяется во внутренних частях организма, а не поступает через кожные покровы;

Подбором соответствующей частоты можно осуществлять избирательное воздействие на нужный вид ткани;

Количество выделяемой теплоты можно дозировать, регулируя выходную мощность генератора.

Использование высокочастотных токов в медицине

Прогревание тканей высокочастотными токами используют в следующих физиотерапевтических процедурах.

Диатермия - метод электролечения, заключающийся в местном воздействии на организм переменным током высокой частоты и большой силы, приводящем к повышению температуры тканей.

При диатермии применяют ток частоты 1-2 МГц и силы 1-1,5 А. Свинцовые электроды накладывают на тело пациента так, чтобы прогреваемый участок находился между ними. Величина напряжения 100-150 В. Плотность тока определяется площадью электродов и общим сопротивлением ткани между ними. Сильнее нагреваются ткани с большим удельным сопротивлением (кожа, жир, мышцы). Меньше нагреваются органы, богатые кровью или лимфой (легкие, печень, лимфоузлы).

Недостаток диатермии - непродуктивное выделение теплоты в слое кожи и подкожной клетчатке.

Местная дарсонвализация - метод электролечения, заключающийся в местном воздействии на организм слабым импульсным током высокой частоты и высокого напряжения.

При дарсонвализации применяют ток частотой 100-400 кГц и напряжением в десятки кВ. При этом к телу пациента прикладывается только один стеклянный электрод, заполненный графитом (рис. 17.2).

Рис. 17.2. Дарсонвализация лица (а), десен (б)

Графит, стекло и поверхность тела, к которой приложен электрод, образуют конденсатор С 1 (рис. 17.3). Второй электрод находится внутри корпуса прибора. Этот электрод, тело пациента и находящийся между ними слой воздуха образуют конденсатор С 2 . Электрическая схема подключения показана на рис. 17.3. Она включает два конденсатора и резистор R, изображающий сопротивление прогреваемого участка.

Рис. 17.3. Электрическая схема дарсонвализации

При частоте 100-400 кГц импеданс цепи обеспечивает силу тока в цепи I = 10-15 мА. В воздушном промежутке между электродом Э и поверхностью тела возникает электрический разряд, который

стимулирует в коже положительные для нее физиологические процессы и вызывает деструкцию оболочек микроорганизмов.

Токи высокой частоты используются и в хирургических целях.

Диатермокоагуляция - прижигание, «сваривание» ткани. При этом применяется ток плотностью 6-10 мА/мм 2 , в результате чего температура ткани повышается и ткань коагулирует.

Диатермотомия - рассечение тканей при помощи электрода в форме лезвия, который дает узкий ровный разрез без капиллярного кровотечения. При этом плотность тока составляет 40 мА/мм 2 .

Электрохирургическое воздействие сопровождается меньшими кровопотерями.

17.4. Действие магнитных полей

Магнитное поле оказывает силовое воздействие на движущиеся заряженные частицы (ионы) и ориентирующее воздействие на частицы, обладающие магнитным моментом. Переменное магнитное поле создает в проводящих тканях токи Фуко, которые оказывают как тепловое, так и раздражающее действие. С этими физическими эффектами связаны разнообразные биологические эффекты. Условно их делят на тепловые и нетепловые.

Магнитные поля, используемые в медицине, создаются постоянными магнитами или катушками-соленоидами, которые называют индукторами. Во время проведения терапевтических процедур с использованием магнитного поля пациент не имеет контакта с проводниками, находящимися под напряжением. Поэтому эти процедуры электробезопасны.

Постоянное магнитное поле

Постоянная магнитотерапия - лечебное использование нетепловых эффектов постоянного магнитного поля.

Постоянные магнитные поля с индукцией 1-50 мТл вызывают перестройку жидкокристаллических структур биологических мембран, что существенно изменяет проницаемость липидного бислоя и приводит к усилению метаболической и ферментативной активности клеток. В цитоплазме такие поля индуцируют фазовые гель-золь переходы. Воздействие постоянного магнитного поля на кровь и

Рис. 17.4. Пояс радикулитный

лимфу может существенно изменять их вязкость и другие физико-химические свойства. Вместе с тем следует подчеркнуть, что физическая природа воздействия постоянного магнитного поля на биологические объекты изучена слабо.

В настоящее время с лечебной целью используют устройства нескольких типов.

1. Магнитоэласты, изготовленные из смеси полимерного вещества с порошкообразным ферромагнитным наполнителем (имеет множество локальных магнитных полюсов). Наборы эластичных магнитов в корсете создают основу всевозможных радикулитных поясов (рис. 17.4). Магнитная индукция 8-16 мТл.

2. Магниты кольцевые, пластинчатые, дисковые. Магнитная индукция 60-130 мТл.

3. Микромагниты - намагниченные иглы, шарики, клипсы (для магнитопунктуры). Магнитная индукция 60-100 мТл.

4. Пластинчатые магниты используют в виде браслетов, носимых на запястье пациента. Магнитная индукция 20-70 мТл.

Переменное магнитное поле

Лечебное действие переменного магнитного поля связано как с тепловыми, так и с нетепловыми эффектами токов Фуко, которые возникают в проводящей среде при изменении магнитного поля.

Импульсная магнитотерапия - лечебное применение импульсного магнитного поля при невысокой частоте следования импульсов (0,125-1000 имп/с).

Здесь используются нетепловые эффекты. Токи Фуко значительной плотности способны вызвать возбуждение волокон периферических нервов и ритмические сокращения миофибрилл скелетной мускулатуры, гладких мышц сосудов и внутренних органов. Вихревые токи низкой частоты способны блокировать афферентную импульсацию из болевого очага (купирование болевого синдрома).

На рисунке 17.5 показано лечебное воздействие импульсного поля на нижнюю конечность, помещенную внутрь блока соленоидов. Здесь используют поле с частотой 10 имп/с и индукцией 30 мТл.

Рис. 17.5. Расположение индуктора при низкочастотной магнитотерапии нижней конечности

Высокочастотная магнитотерапия - лечебное применение магнитной составляющей гармонического электромагнитного поля высокой частоты (устаревшее название этого метода - индуктотермия).

В результате явления электромагнитной индукции (как и в случае импульсного магнитного поля) в проводящих тканях образуются вихревые токи Фуко, нагревающие объект. Для гармонического магнитного поля плотность токов Фуко пропорциональна его частоте (ν). Выраженный тепловой эффект начинает проявляться на частотах порядка 10 МГц. Количество теплоты, выделяющейся за единицу времени в единице объема проводника, определяется формулой

Здесь ρ - удельное сопротивление ткани. Коэффициент пропорциональности k зависит от геометрических характеристик прогреваемого участка.

В отличие от методов лечения высокочастотными токами, основное тепловое воздействие в данном случае оказывается на ткани с малым удельным сопротивлением. Поэтому сильнее нагреваются ткани, богатые сосудами, например мышцы. В меньшей степени нагреваются такие ткани, как жир.

Для формирования переменного магнитного поля используют индукторы-соленоиды (рис. 17.6).

Рис. 17.6. Схема воздействия переменным магнитным полем

Для проведения физиотерапевтических процедур используют переменные магнитные поля с частотой 10-15 МГц. При этом используют кабельные индукторы различной формы (рис. 17.7): а - плоская продольная петля (чаще на спине); б - плоская круглая спираль (на туловище); в - цилиндрическая спираль (на конечностях).

В результате выделения теплоты происходит равномерный локальный нагрев облучаемой ткани на 2-4 градуса на глубину 8-12 см, а также повышение температуры тела пациента на 0,3-0,9 градуса.

В процессе высокочастотной магнитотерапии проявляется и нетепловой эффект: вихревые токи вызывают изменение характера взаимодействия собственных магнитных полей заряженных частиц в ткани, но подробно этот механизм здесь не разбирается.

Рис. 17.7. Способы наложения индуктора кабеля при различных методиках высокочастотной магнитотерапии:

а - плоская продольная петля, б - плоская круглая спираль, в - цилиндрическая спираль

17.5. Действие постоянного электрического поля

Старейшим среди используемых в настоящее время методов электролечения является франклинизация - лечебное воздействие постоянным электрическим полем высокой напряженности.

Для формирования электрического поля используются электроды различной формы с иглами на концах. В процедурах общей франклинизации (рис. 17.8, а - электростатический душ) напряженность электрического поля у головы пациента достигает 90 кВ/м. Напряженность электрического поля внутри тела человека составляет при этом около 10 мВ/м. В проводящих тканях возникают слабые токи, изменяющие функциональные свойства проводящих нервных путей и существенно ограничивающие поток афферентной импульсации в вышележащие отделы центральной нервной системы, что приводит к усилению тормозных процессов в коре и подкорковых центрах. В результате у больного снижается артериальное давление, урежается частота дыхания и увеличивается его глубина, уменьшается утомляемость и повышается работоспособность.

При местной франклинизации (рис. 17.8, б) воздействию электрического поля подвергаются отдельные участки тела.

Рис. 17.8. Общая (а) и местная (б) франклинизация

Рис. 17.9. Аэроионизатор системы А.Л. Чижевского с головным электродом (а), электрод для общей аэроионизации (б)

Действие местной франклинизации усиливается при воздействии электрического поля на иглы, введенные в биологически активные точки - акупунктурная франклинизация.

Для проведения групповых процедур франклинизации применяют высоковольтный генератор - электроэффлювиальную лампу Чижевского (аэроионизатор). Эта система предназначена для получения ионизированного воздуха, в частности ионов кислорода (озона), оказывающих биологическое действие. Аэроионизатор системы А.Л. Чижевского (рис. 17.9) подает высокое постоянное напряжение на «электроэффлювиальную люстру», снабженную большим количеством острых окончаний - игл.

В этом случае между электродом и телом человека возникает коронный разряд, происходит ионизация молекул воздуха, формируется поток аэронов и озона (электроэффлювия). Воздействию аэроионами подвергаются лицо, воротниковая зона, верхние дыхательные пути.

17.6. Действие переменного электрического поля

(УВЧ)

Переменное электромагнитное поле вызывает колебательное движение ионов (переменный ток) и крутильные колебания дипольных молекул. Эти процессы сопровождаются выделением теплоты.

Воздействие поля УВЧ на проводник

Удельная тепловая мощность, выделяющаяся в проводнике вследствие колебательного движения ионов, определяется формулой

где Е - напряженность электрического поля внутри вещества, ρ - удельное сопротивление вещества.

Эта формула непригодна для непосредственных вычислений, так как в нее входит напряженность Е электрического поля внутри вещества. Эта величина рассчитывается достаточно сложно (см. задачу 1). На тех частотах, которые используются в медицинских процедурах (УВЧ), удельная тепловая мощность определяется формулой

где U - действующее значение напряжения на электродах, создающих переменное электрическое поле, k - некоторый геометрический коэффициент (см. задачу 2).

Воздействие поля УВЧ на диэлектрик

Приводит к выделению теплоты (диэлектрические потери).

Количество выделившейся теплоты зависит от угла δ, на который колебания молекул отстают по фазе от колебаний напряженности поля. Угол δ называется углом диэлектрических потерь.

Удельная тепловая мощность, выделяющаяся вследствие диэлектрических потерь, определяется соотношением

Здесь ε - диэлектрическая проницаемость вещества; Е - действующее значение напряженности поля в диэлектрике.

Величина тангенса угла диэлектрических потерь определяется природой диэлектрика и зависит от частоты. В областях α-, β-, γ -дисперсии (см. раздел 15.6) эта величина испытывает резкие изменения.

Применение переменного электромагнитного поля в медицине

Одним из распространенных методов высокочастотной терапии является воздействие высокочастотным электрическим полем УВЧ.

Ультравысокочастотная (УВЧ) терапия - лечебное использование электрической составляющей переменного электромагнитного поля ультравысокой частоты.

Для проведения лечебной процедуры участок тела, на который оказывается воздействие, помещается между двумя электродами, которые являются выносными пластинами конденсатора, входящего в электрическую схему аппарата УВЧ. На эти пластины подается генерируемое переменное напряжение, и между ними возникает переменное электрическое поле, оказывающее лечебное воздействие (рис. 17.10).

Способы наложения электродов показаны на рис. 17.11

Нагревание органов и тканей под действием электрического поля УВЧ вызывает стойкую, длительную и глубокую гиперемию тканей в зоне воздействия. Особенно сильно расширяются капилляры, диаметр которых увеличивается в несколько раз. Под воздействием УВЧ-поля существенно ускоряется и региональная лимфодинамика, повышается проницаемость эндотелия и других тканевых барьеров.

Аппараты для УВЧ-терапии используют частоты 40 и 27 МГц. Последняя частота является международной. Ей соответствует длина волны 11 м.

Рис. 17.10. Схема воздействия полем УВЧ

Рис. 17.11. Способы наложения электродов:

а - поперечный, б -продольный, в - тангенциальный

17.7. Действие электромагнитных волн (СВЧ)

На частотах, которые использует УВЧ-терапия, диэлектрические ткани организма нагреваются интенсивнее проводящих. При увеличении частоты электромагнитного поля этот порядок меняется: большее выделение тепла происходит в органах и тканях, богатых водой (кровь, лимфа, мышечная ткань, паренхиматозные органы). Это связано с уменьшением тангенса угла диэлектрических потерь при повышении частоты.

Для терапевтического воздействия на проводящие ткани используют волны дециметрового и сантиметрового диапазонов (СВЧ-терапия). Воздействие осуществляется путем облучения поверхности соответствующей области тела направленным потоком волн, который образуется с помощью специального излучателя, называемого волноводом.

Механизмы выделения теплоты при СВЧ- и УВЧ-терапии одинаковы. Различаются лишь структуры, на которые оказывается преимущественное воздействие. Удельная тепловая мощность, выделяющаяся в тканях, вычисляется по формуле

где I - интенсивность волны, а k - некоторый коэффициент, зависящий от свойств ткани.

Дециметровая терапия (ДЦВ-терапия) - лечебное использование электромагнитных волн дециметрового диапазона (частота - 460 МГц, длина волны - 65,2 см). Под действием этого фактора в тканях организма возникают ориентационные колебания дипольных молекул связанной воды, а также боковых групп белков и гликолипидов плазмолеммы. Эти колебания происходят в вязкой среде цитозоля и сопровождаются выделением теплоты.

Микроволновая (сантиметровая) терапия - лечебное использование электромагнитных волн сантиметрового диапазона (частота - 2375 МГц, длина волны - 12,6 см). В первичном действии дециметровых и сантиметровых волн принципиальных различий нет. Вместе с тем существенное уменьшение длины волны приводит к увеличению удельного веса релаксационных колебаний молекул свободной неструктурированной воды, боковых цепей фосфолипидов и аминокислот.

Процедуры СВЧ-терапии осуществляются по двум основным методикам.

Дистантная методика - облучение электромагнитными волнами осуществляется дистанционно, при этом расстояние между излучателем и биологическим объектом не превышает 5 см. В этом случае от поверхности будет отражаться энергия волны (в некоторых случаях до 70-80 %).

Контактная методика - излучатель волн размещается непосредственно на теле больного или вводится внутрь.

При любом методе лечения необходимо строго дозировать воздействие по выходной мощности, генерируемой излучателем.

Тлубина проникновения электромагнитных волн в биологические ткани зависит от способности этих тканей поглощать энергию волны. Сантиметровые волны проникают в мышцы, кожу на глубину до 2 см, в жировую ткань, кости - около 10 см. Дециметровые волны проникают на глубину в 2 раза большую.

Сравнение воздействий низкочастотного и высокочастотного полей (токов) представлено ниже в таблице.

17.8. Задачи

1. Вывести формулу для вычисления удельной тепловой мощности в проводнике, который помещен в переменное электрическое поле. Рассмотреть следующую модель: электрическое поле создается двумя пластинами площади S, подключенными к полюсам высокочастотного генератора c действующим напряжением U и круговой частотой ω. Расстояние между пластинами l << размеров пластин. Между пластинами помещен проводник с удельным сопротивлением ρ толщиной h, форма и размеры которого совпадают с формой и размерами пластин. Проводник расположен симметрично пластинам.

Решение

В прикладной литературе для вычисления удельной тепловой мощности приводится формула: q = E 2 /p, где Е - напряженность электрического поля внутри проводника. Эта формула, являясь физически правильной, не только непригодна для расчетов, но и порождает серьезные заблуждения. Например, эта формула не содержит частоты ω, и складывается впечатление, что и q не зависит от частоты. Далее, удельное сопротивление ρ стоит в знаменателе, хотя на самом деле при частотах УВЧ-терапии оно должно стоять в числителе.

Причина таких несоответствий состоит в том, что входящая в эту формулу напряженность Е не является задаваемой величиной. Задаваемыми величинами являются: напряжение U, расстояние между электродами l, толщина проводника h и его удельное сопротивление ρ. Величина напряженности электрического поля внутри проводника зависит от них достаточно сложным образом. Получим корректную формулу, для расчета удельной тепловой мощности.

На рисунке изображена электрическая схема и выполнен расчет импеданса (С 0 - воздушный конденсатор). Действующее значение тока в цепи и выделяющаяся тепловая мощность равны:

Покажем, что эта формула совпадает с формулой q = E 2 /p. Действительно, падение напряжения на проводнике и напряженность поля в нем соответственно равны:

На низких частотах, когда емкостное сопротивление значительно больше активного сопротивления, получается следующее приближение:


2. Определить, по какой формуле следует вычислять удельную тепловую мощность тока проводимости, выделяющуюся в мышечной ткани при УВЧ-прогревании мышечной ткани. Использовать результаты предыдущей задачи со следующими значениями:

ν = 40 МГц, l = 15 см, h = 10 см, ρ = 1,5 Ом-м.

3. Получить формулу для расчета удельной тепловой мощности, выделяющейся в диэлектрике, если в задаче 1 заменить проводящую пластину на диэлектрическую с проницаемостью ε.

Выполнив очевидные расчеты, найдем

4. Какой емкостью должен обладать терапевтический контур аппаратов для УВЧ-терапии и индуктотермии, если их резонансные частоты и индуктивности равны соответственно:

5. В микроволновой терапии используются электромагнитные волны в дециметровом диапазоне λ 1 = 65 см и сантиметровом диапазоне λ 2 = 12,6 см. Определить соответствующие частоты.

Ответ: ν 1 = 460 МГц; ν 2 = 2375 МГц.

6. Терапевтический контур аппарата УВЧ, работающего на частоте 40,68 МГц, состоит из катушки индуктивности 0,17 мкГн и конденсатора переменной емкости С п = 10-80 пФ, зашунтированного конденсатором С 0 = 48 пФ. При какой емкости переменного конденсатора терапевтический контур будет настроен в резонанс с анодным контуром?

Токами высокой частоты (ТВЧ) принято считать токи, для которых не выполняется условие квазистационарности, следствием чего является сильно выраженный скин-эффект

Токами высокой частоты (ТВЧ) принято считать токи, для которых не выполняется условие квазистационарности, следствием чего является сильно выраженный скин-эффект. По этой причие ток протекает по поверхности проводника, не проникая в его объём. Частота таких токов превышает 10000 Гц.

Чтобы получить токи с частотой более нескольких десятков килогерц используются электромашинные генераторы, в состав которых входит статор и ротор. На их обращённых друг к другу поверхностях есть зубцы, из-за взаимного перемещения которых возникает пульсация магнитного поля. Итоговая частота получаемого на выходе тока равна произведению частоты вращения ротора на число зубцов на нём.

Также для получения ТВЧ используются колебательные контуры, например, электрическая цепь, в составе которой имеется индуктивность и ёмкость. Чтобы получить ТВЧ частоты в миллиарды герц, применяются установки с полым колебательным контуром (ЛОВ, ЛБВ,магнетрон , клистрон).

Если проводник разместить в магнитном поле катушки, в которой течёт ток высокой частоты, то в проводнике возникнут большие вихревые токи, которые будут нагревать его. Температуру и интенсивность нагрева можно регулировать, изменяя ток в катушки. Благодаря этому свойству ТВЧ используют во многих областях человеческой деятельности: в индукционных печах, в металлургии для поверхностной закалки деталей, медицине, сельском хозяйстве, в бытовых приборах (микроволновые печи, различные устройства для приготовления пищи), радиосвязи, радиолокации, в телевидении и др.

Примеры использования токов высокой частоты

С помощью ТВЧ в индукционных печах можно расплавлять любые металлы. Преимущество этого вида выплавки заключается в возможности выплавки в условиях полного вакуума, когда исключается контакт с атмосферой. Это даёт возможность производить сплавы, чистые по неметаллическим включениям и ненасыщенные газами (водородом, азотом).

На закалочных станках с помощью ТВЧ удаётся выполнять закалку стальных изделий только в поверхностном слое из-за скин эффекта. Это даёт возможность получить детали с твёрдой поверхностью, способные сопротивляться значительным нагрузкам и в то же время без снижения износостойкости и пластичности, поскольку сердцевина остаётся мягкой.

В медицине токи высокой частоты уже давно применяются в приборах УВЧ, где с помощью нагрева диэлектрика осуществляется прогревание каких-либо органов человека. ТВЧ даже очень большой силы тока безвредны для человека, поскольку протекают исключительно в самых поверхностных слоях кожи. Также в медицине используются электроножи, основанные на ТВЧ, с помощью которых "заваривают" кровеносные сосуды и разрезают ткани.

Токами высокой частоты (ТВЧ) принято считать токи, для которых не выполняется условие квазистационарности, следствием чего является сильно выраженный скин-эффект. По этой причие протекает по поверхности проводника, не проникая в его объём. таких токов превышает 10000 Гц.

Чтобы получить токи с частотой более нескольких десятков килогерц используются электромашинные генераторы, в состав которых входит статор и ротор. На их обращённых друг к другу поверхностях есть зубцы, из-за взаимного перемещения которых возникает пульсация магнитного поля. Итоговая получаемого на выходе тока равна произведению частоты вращения ротора на число зубцов на нём.

Также для получения ТВЧ используются колебательные контуры, например, электрическая цепь, в составе которой имеется индуктивность и ёмкость. Чтобы получить ТВЧ частоты в миллиарды герц, применяются установки с полым колебательным контуром (ЛОВ, ЛБВ, клистрон).

Если проводник разместить в магнитном поле катушки, в которой течёт высокой частоты, то в проводнике возникнут большие вихревые токи, которые будут нагревать его. Температуру и интенсивность нагрева можно регулировать, изменяя в катушки. Благодаря этому свойству ТВЧ используют во многих областях человеческой деятельности: в индукционных печах, в металлургии для поверхностной закалки деталей, медицине, сельском хозяйстве, в бытовых приборах (микроволновые печи, различные устройства для приготовления пищи), радиосвязи, радиолокации, в телевидении и др.

Примеры использования токов высокой частоты

С помощью ТВЧ в индукционных печах можно расплавлять любые металлы. Преимущество этого вида выплавки заключается в возможности выплавки в условиях полного вакуума, когда исключается контакт с атмосферой. Это даёт возможность производить сплавы, чистые по неметаллическим включениям и ненасыщенные газами (водородом, азотом).

На закалочных станках с помощью ТВЧ удаётся выполнять закалку стальных изделий только в поверхностном слое из-за скин эффекта. Это даёт возможность получить детали с твёрдой поверхностью, способные сопротивляться значительным нагрузкам и в то же время без снижения износостойкости и пластичности, поскольку сердцевина остаётся мягкой.

В медицине токи высокой частоты уже давно применяются в приборах УВЧ, где с помощью нагрева диэлектрика осуществляется прогревание каких-либо органов человека. ТВЧ даже очень большой силы тока безвредны для человека, поскольку протекают исключительно в самых поверхностных слоях кожи. Также в медицине используются электроножи, основанные на ТВЧ, с помощью которых «заваривают» кровеносные сосуды и разрезают ткани.

Погрузите палку в пруд. Уровень воды должен повыситься. Но это повышение настолько ничтожно, что обнаружить его трудно. А если попеременно погружать палку в воду и вытаскивать ее, то по воде побегут волны. Они заметны на значительном расстоянии от места возникновения. Такое механическое движение воды можно сравнить с электромагнитными явлениями. Вокруг проводника с постоянным током возникает постоянное электромагнитное поле. Обнаружить его вдали от токонесущего проводника трудно.

Но если по проводнику пропускать переменный электрический ток, то и электромагнитные силы вокруг проводника будут все время меняться, т. е. электромагнитное поле вокруг него будет волноваться. От проводника с переменным током бегут электромагнитные волны.

Расстояние между двумя ближайшими гребнями волн на пруду - это длина волны. Ее обозначают греческой буквой λ (ламбда). Время, за которое какой-либо участок волнующейся поверхности воды поднимается, опускается и вновь возвращается к своему начальному положению - это период колебания - Т . Обратную величину называют частотой колебаний и обозначают буквой f . Частоту колебаний измеряют в периодах в секунду. Единица измерения частоты колебаний, соответствующая одному периоду в секунду, названа герц (гц) - в честь Генриха Рудольфа Герца (1857 - 1894), знаменитого исследователя колебаний и волн (1 тыс. герц=1 килогерц, 1 млн. герц= 1 мегагерц).

Скорость волн (с ) - то расстояние, на которое волны распространяются за одну секунду. За время одного периода Т волновое движение успевает распространиться как раз на длину одной волны X. Для волнового движения справедливы следующие соотношения:

с Т = λ; с / f = λ

Эти соотношения между частотой колебаний, длиной волны и скоростью движения волн верны не только для волн на воде, но и для любых колебаний и волн.

Необходимо сразу же подчеркнуть одно свойство электромагнитных колебаний. Когда они распространяются в пустом пространстве, то, какова бы ни была их частота, какова бы ни была длина волны, скорость их распространения всегда одна и та же -300 тыс. км/сек. Видимый свет - это один из видов электромагнитных колебаний (с длиной волны от 0,4 до 0,7 миллимикрона и частотой 10 14 - 10 15 гц). Скорость распространения электромагнитных волн - это скорость света (3 10 10 см/сек).

В воздухе и в других газах скорость распространения электромагнитных колебаний лишь немного меньше, чем в пустоте. А в различных жидких и твердых средах она может быть в несколько раз меньше, чем в пустоте; кроме того, здесь она зависит от частоты колебаний.

Самая маленькая и самая большая Есть много единиц измерения энергии: эрг, джоуль, калория и др. Самая маленькая из них - электронвольт: электрон, разогнанный в электрическом поле между точками с разностью потенциалов в 1 в, будет обладать энергией в 1 электронвольт. Самую большую единицу энергии предложил недавно для подсчетов мировых запасов энергии индийский ученый Хоми Баба. Его единица равна тепловой энергии, которая выделяется при сжигании 33 млрд. Т каменного угля. Такое количество угля ученый взял потому, что за последние 20 лет, в течение которых особенно много добывалось и сжигалось угля, его было извлечено из земных недр именно 33 млрд. Т.

Излучение и излучатели

Мы живем в мире электромагнитных колебаний. И солнечный свет, и загадочные потоки космических лучей, падающих на Землю из межзвездных пространств, и тепло, испускаемое жарко натопленной печью, и электрический ток, циркулирующий в силовых сетях, - все это электромагнитные колебания. Все они распространяются в виде волн, в виде лучей.

Всякий предмет, всякое тело, порождающее волны, называют излучателем. Палка, которой болтают в пруду, - это излучатель водяных волн. Вода оказывает сопротивление ее движению. Чтобы двигать палку, надо затрачивать мощность. Эта передаваемая воде мощность численно равна произведению квадрата скорости движения палки на сопротивление движению. Частично эта мощность превращается в тепло - идет на нагревание воды, а частично идет на образование волн.

Можно сказать, что полное сопротивление, испытываемое палкой, - это сумма двух сопротивлений: одно из них - сопротивление теплообразования, а другое - сопротивление волнообразования - сопротивление излучения, как его принято называть.

Такие же закономерности и у электромагнитных явлений. Мощность, которую расходует в проводнике электрический ток, равна произведению сопротивления проводника на квадрат тока в нем. Если взять ток в амперах, а сопротивление в омах, то мощность получится в ваттах.

В электрическом сопротивлении любого проводника (как и в механическом сопротивлении воды движению палки) можно различить две составляющие: сопротивление теплообразования - омическое сопротивление и сопротивление излучения - сопротивление, вызванное образованием вокруг проводника электромагнитных волн, уносящих с собой энергию.

Возьмем, например, электрическую нагревательную плитку, для которой омическое сопротивление равно 20 ом, а ток - 5 а. Мощность, превращаемая в этой плитке в тепло, будет равна 500 вт (0,5 кВт). Чтобы вычислить мощность волн, бегущих от излучателя, надо помножить квадрат тока в проводнике на сопротивление излучения этого проводника.

Сопротивление излучения находится в сложной зависимости от формы проводника, от его размеров, от длины излучаемой электромагнитной волны. Но для одиночного прямолинейного проводника, во всех точках которого идет ток одного и того же направления и одинаковой силы, сопротивление излучения (в омах) выражается относительно простой формулой:

R изл =3200(l/λ) 2

Здесь l - длина проводника, а λ - длина электромагнитной волны (эта формула справедлива при l значительно меньших, чем λ ).

При ориентировочных прикидках эту формулу можно применять для любых электротехнических конструкций, любых машин и аппаратов, например для нагревательной плитки, в которой провод не прямолинеен, а свернут в спираль, уложенную зигзагом. Но в качестве l в формулу сопротивления излучения надо подставлять не полную длину проводника, а один из приведенных размеров рассматриваемой конструкции. Для нагревательной плитки l приблизительно равно поперечнику плитки.

На центральных электростанциях вырабатывается переменный ток с частотой 50 гц. Этому току соответствует электромагнитная волна длиной в 6 тыс. км. Не только электрическая плитка, но и самые крупные электрические машины и аппараты и даже дальние линии электропередачи имеют размеры l во много раз меньшие, нежели длина этой электромагнитной волны. Сопротивление излучения самых крупных электрических машин и аппаратов для тока с частотой 50 гц измеряется ничтожными долями ома. Даже при токах в тысячи ампер излучаются мощности меньше одного ватта.

Поэтому в практике при применении промышленного тока с частотой 50 гц не приходится учитывать его волновые свойства. Энергия этого тока крепко «привязана» к проводам. Для подключения потребителя (ламп, печей, двигателей и т. д.) необходим непосредственный контакт с токонесущими проводами.

С повышением частоты тока длина электромагнитной волны уменьшается. Например, для тока с частотой 50 Мгц она равна 3 м. При такой волне даже проводник небольших размеров может иметь значительное сопротивление излучения и при относительно небольших токах излучать значительные количества энергии.

По уточненным расчетам проводник длиной в полволны (l=λ/2) имеет сопротивление излучения R изл. около 73 ом. При токе, скажем, 10 а излучаемая мощность будет 7,3 кВт. Проводник, способный излучать электромагнитную энергию, называют антенной. Этот термин был заимствован электриками в конце прошлого века из энтомологии, - антенной называется усик-щупальце у насекомых.

У истоков радиотехники

Электромагнитные колебания, совершающиеся с частотой в миллион миллиардов герц, наше зрение ощущает как свет. В тысячу раз более медленные колебания могут ощущаться кожей как тепловые лучи.

Электромагнитные колебания, частота которых находится в пределах от нескольких килогерц до тысяч мегагерц, не воспринимаются органами чувств, но они имеют большое значение в нашей жизни. Эти колебания способны распространяться, как и свет и тепло, в виде лучей. По-латыни слово «луч» - «радиус». От этого корня и образовано слово «радиоволны». Это колебания, порождаемые токами высокой частоты. Основное, важнейшее их применение - беспроволочная телеграфная и телефонная связь. Впервые в мире беспроволочную передачу сигналов радиоволнами практически осуществил русский ученый Александр Степанович Попов. 7 мая (25 апреля) 1895 г. на заседании физического отделения Русского физико-химического общества он продемонстрировал прием радиоволн.

В наше время с помощью радио можно установить беспроволочную связь между любыми точками земного шара. Возникли новые отрасли высокочастотной техники - радиолокация, телевидение. Радиотехника стала применяться в различных отраслях промышленности.

Обзор высокочастотной техники правильно начинать с методов получения переменных токов высокой частоты.

Самый старый и наиболее простой способ получения высокочастотных электромагнитных колебаний - это разряд конденсатора через искру. Первые радиопередатчики А. С. Попова имели искровые генераторы с такими простейшими разрядниками в виде двух шаров, разделенных воздушным промежутком.

Машинный генератор тока повышенной частоты.

В начале нашего столетия появились усовершенствованные искровые разрядники, которые давали высокочастотные колебания мощностью до 100 кВт. Но в них были велики потери энергии. В настоящее время есть более совершенные источники токов высокой частоты (ТВЧ).

Для получения токов с частотой до нескольких килогерц обычно применяют машинные генераторы. Такой генератор состоит из двух основных частей - неподвижного статора и вращающегося ротора. Обращенные друг к ДРУГУ поверхности ротора и статора зубчатые. При вращении ротора взаимное перемещение этих зубцов вызывает пульсацию магнитного потока. В рабочей обмотке генератора, уложенной на статоре, возникает переменная электродвижущая сила (э.д.с.). Частота тока равна произведению числа зубцов ротора на число его оборотов в секунду. Например, при 50 зубцах на роторе и скорости его вращения в 50 об/сек получается ток-частотой 2500 гц.

В настоящее время выпускаются машинные генераторы ТВЧ мощностью до нескольких сотен киловатт. Они дают частоты от нескольких сотен герц до 10 кгц.

Один из наиболее распространенных современных способов получения ТВЧ - это применение колебательных контуров, соединенных с электрическими управляемыми вентилями.

МОТИВАЦИЯ

Наиболее перспективным направлением современной физиотерапии следует считать дальнейшее совершенствование импульсных ритмических воздействий при лечении различных патологических состояний, так как импульсные воздействия в определённом заданном режиме соответствуют физиологическим ритмам функционирующих органов и их систем.

ЦЕЛЬ ЗАНЯТИЯ

Научиться использовать для лечения заболеваний методики:

Электросна;

Транскраниальной электроаналгезии;

Короткоимпульсной электроаналгезии;

Диадинамотерапии;

Электродиагностики;

Электростимуляции и электропунктуры.

ЦЕЛЕВЫЕ ВИДЫ ДЕЯТЕЛЬНОСТИ

Понимать сущность физиологического действия импульсных токов низкой частоты. Уметь:

Определить показания и противопоказания к применению импульсных токов низкой частоты;

Выбирать адекватный вид лечебного воздействия;

Самостоятельно назначать процедуры;

Оценивать действие импульсных токов на организм больного.

Изучить принципы работы аппаратов «Электросон-5», «ЛЭНАР», «Тонус-3», «Миоритм».

БЛОК ИНФОРМАЦИИ

Импульсные методики воздействия физическими факторами - наиболее адекватные раздражители для организма, и при нарушенных функциях их терапевтическое воздействие наиболее эффективно. Основные преимущества импульсных методик физиотерапии:

Избирательность действия;

Возможность более глубокого воздействия;

Специфичность;

Отсутствие быстрого привыкания тканей к физическому фактору;

Терапевтическое воздействие при наименьшей нагрузке на организм.

Импульсные токи состоят из ритмически повторяющихся кратковременных изменений электрического напряжения или силы тока. Возможность использования импульсного тока для стимулирующего действия на различные органы, ткани и системы организма основана на природе электрических импульсов, имитирующих физиологический эффект нервных импульсов и вызывающих реакцию, подобную естественному возбуждению. В основе действия электрического тока лежит движение заряженных частиц (ионы тканевых электролитов), в результате чего обычный состав ионов по обе стороны клеточной мембраны изменяется и в клетке развиваются физиологические процессы, вызывающие возбуждение.

О возбудимости можно судить по наименьшей силе раздражителя, необходимой для возникновения рефлекторной реакции, или по пороговой силе тока, или по пороговому сдвигу потенциала, достаточному для возникновения потенциала действия. Говоря о возбудимости, используют такие понятия, как реобаза и хронаксия. Эти понятия были введены в физиологию в 1909 году Л. Лапиком, изучавшим наименьший (пороговый) эффект возбудимых тканей и определившим зависимость между силой тока и длительностью его действия. Реобаза (от греч. «rheos» - течение, поток и «basis» - ход, движение; основание) - наименьшая сила постоянного электрического тока, вызывающая возбуждение в живых тканях при достаточной длительности действия. Реобаза, как и хронаксия, позволяет оценить возбудимость тканей и орга-

нов по пороговой силе раздражения и длительности его действия. Реобаза соответствует порогу раздражения и выражается в вольтах или миллиамперах.

Значение реобазы можно вычислить по формуле:

где I - сила тока, t - длительность его действия, а, b - константы, определяемые свойствами ткани.

Хронаксия (от греч. «chronos» - время и «axia» - цена, мера) - наименьшее время действия постоянного электрического тока удвоенной пороговой силы (удвоенной реобазы), вызывающее возбуждение ткани. Как установлено экспериментально, величина стимула, вызывающего возбуждение в тканях, обратно пропорциональна длительности его действия, что графически выражается гиперболой (рис. 6).

Изменение функционального состояния клеток, тканей и органов под действием внешнего электрического раздражителя называют электростимуляцией. В пределах электростимуляции выделяют электродиагностику и электротерапию. При электродиагностике исследуют реакцию организма на электрическое раздражение импульсными токами. Установлено, что раздражающее действие одиночного импульса тока зависит от крутизны нарастания его переднего фронта, длительности и амплитуды импульса. Крутизна нарастания фронта одиночного импульса определяет ускорение ионов при их перемещении. Кроме того, действие переменного электрического тока на организм существенно зависит от его частоты. При низкой частоте импульсации (порядка 50-100 Гц) смещения ионов достаточно, чтобы оказать раздражающее действие на клетку. При средних частотах раздражающее действие тока уменьшается. При достаточно высокой частоте (порядка сотен килогерц) величина смещения ионов становится соизмеримой с величиной их смещения при тепловом движении, что уже не вызывает заметного изменения их концентрации и не оказывает раздражающего действия.

Величина пороговой амплитуды определяет максимальное мгновенное смещение ионов и зависит от длительности импульсов. Эта связь описывается уравнением Вейса-Лапика (см. рис. 6).

Каждой точке кривой на рис. 6 и точкам, лежащим выше кривой, соответствуют импульсы, которые вызывают раздражение тканей. Предельно кратковременные импульсы не оказывают раздражающего действия (смещение ионов соизмеримо с амплитудой

Рис. 6. Кривая электровозбудимости мышцы (Вейса-Лапика).

колебаний при тепловом движении). При довольно длительных импульсах раздражающее действие тока становится независимым от длительности. Параметры импульсов, обеспечивающие оптимальную реакцию на раздражение, используют для лечебной электростимуляции. Современное развитие электроники обеспечивает возможность получения импульсных токов с любыми необходимыми параметрами. В современных аппаратах используют импульсы различной формы, длительностью от десятков миллисекунд до нескольких секунд, с частотой повторения от долей Герца до десяти тысяч Герц.

Электросон

Электросон - метод нейротропного нефармакологического воздействия на ЦНС постоянным импульсным током прямоугольной конфигурации, низкой частоты (1-160 Гц) и малой силы (10 мА). Метод отличается безвредностью, отсутствием токсического действия, аллергических реакций, привыкания и кумуляции.

Считают, что механизм действия электросна основан на непосредственном воздействии тока на структуры головного мозга. Импульсный ток, проникая в мозг через отверстия глазниц, распространяется по сосудистым и ликворным пространствам и достигает чувствительных ядер черепных нервов, гипофиза, гипоталамуса, ретикулярной формации и других структур. Рефлекторный механизм действия электросна связан с воздействием импульсов постоянного тока малой силы на рецепторы рефлексогенной зоны: кожи глазниц и верхнего века. По рефлекторной дуге раздражение пере- даётся в подкорковые образования, кору головного мозга, вызывая эффект охранительного торможения. В механизме лечебного действия электросна существенную роль играет способность нервных клеток мозга усваивать определённый ритм импульсного тока.

Воздействуя на структуры лимбической системы, электросон восстанавливает нарушения эмоционального, вегетативного и гуморального равновесия в организме. Таким образом, механизм действия складывается из прямого и рефлекторного влияния импульсов тока на кору головного мозга и подкорковые образования.

Импульсный ток - слабый раздражитель, оказывающий монотонное ритмическое воздействие на такие структуры головного мозга, как гипоталамус и ретикулярная формация. Синхронизация импульсов с биоритмами ЦНС вызывает торможение последней и ведёт к наступлению сна. Электросон оказывает болеутоляющее, гипотензивное действие, обладает седативным и трофическим эффектом.

Для процедуры электросна характерны две фазы. Первая - тормозная, связанная со стимуляцией импульсным током подкорковых образований и проявляющаяся дремотой, сонливостью, сном, урежением пульса, дыхания, снижением артериального давления и биоэлектрической активности мозга. Затем следует фаза растормаживания, связанная с повышением функциональной активности мозга, систем саморегуляции и проявляющаяся повышенной работоспособностью и улучшением настроения.

Электросон оказывает на организм успокаивающее действие, вызывает сон, близкий к физиологическому. Под влиянием электросна снижается условно-рефлекторная деятельность, урежаются дыхание и пульс, расширяются мелкие артерии, снижается артериальное давление; проявляется аналгезирующий эффект. У больных с неврозами ослабевают эмоциональное напряжение и невротические реакции. Электросон широко применяют в психиатрической практике; при этом констатируют исчезновение чувства тревоги и седативный эффект. Показания к назначению электросна больным с хронической ишемической болезнью сердца (ИБС) и постинфарктным кардиосклерозом:

Кардиалгии;

Чувство страха смерти;

Недостаточная эффективность седативных и снотворных препаратов.

Эффекты электросна:

В первой фазе:

❖ противострессорный;

❖ седативный;

❖ транквилизирующий;

Во второй фазе:

❖ стимулирующий;

❖ снимающий психическое и физическое утомление.

Для проведения процедур электросонтерапии используют генераторы импульсов напряжения постоянной полярности и прямоугольной конфигурации с определённой длительностью и регулируемой частотой: «Электросон-4Т» и «Электросон-5».

Процедуры проводят в тихом, затемнённом помещении с комфортной температурой. Пациент лежит на кушетке в удобном положении. Методика ретромастоидальная. Глазные электроды со смоченными гидрофильными прокладками толщиной 1 см располагают на закрытых веках и соединяют с катодом; затылочные электроды фиксируют на сосцевидных отростках височных костей и присоединяют к аноду. Силу тока дозируют по лёгкому покалыванию или безболезненной вибрации, которые ощущает пациент. При появлении неприятных ощущений в области наложения электродов следует снизить силу подводимого тока, обычно не превышающую 8-10 мА. Частоту импульсов выбирают в зависимости от функционального состояния пациента. При заболеваниях, вызванных развитием органических, дегенеративных процессов в сосудах и нервной ткани головного мозга, эффект наступает, если применяют частоту импульсации 5-20 Гц, а при функциональных нарушениях ЦНС - 60-100 Гц. Одновременно с электросонтерапией можно проводить электрофорез лекарственных веществ. Процедуры продолжительностью от 30-40 до 60-90 мин, в зависимости от характера патологического процесса, проводят ежедневно или через день; курс лечения включает 10-20 воздействий.

Показания к лечению:

Неврозы;

Гипертоническая болезнь;

ИБС (коронарная недостаточность I степени);

Облитерирующие заболевания сосудов конечностей;

Атеросклероз сосудов головного мозга в начальном периоде;

Бронхиальная астма;

Ревматоидный артрит при наличии неврастении или психастении;

Болевой синдром;

Фантомные боли;

Посттравматическая энцефалопатия (при отсутствии арахноидита);

Шизофрения в период астенизации после активного медикаментозного лечения;

Диэнцефальный синдром;

Нейродермит;

Токсикозы беременности;

Подготовка беременных к родам;

Нарушение менструальной функции;

Предменструальный и климактерический синдром;

Метеотропные реакции;

Логоневроз;

Стрессовые состояния и длительное эмоциональное напряжение. Противопоказания:

Непереносимость тока;

Воспалительные и дистрофические заболевания глаз;

Отслойка сетчатки;

Высокая степень близорукости;

Дерматит кожи лица;

Истерия;

Посттравматический арахноидит;

Наличие металлических предметов в тканях мозга и глазного яблока.

Транскраниальная электроаналгезия

Транскраниальная электроаналгезия - метод нейротропной терапии, основанный на воздействии на ЦНС импульсными токами прямоугольной конфигурации с частотой 60-2000 Гц с переменной и постоянной скважностью.

В основе лечебного действия лежит избирательное возбуждение импульсными токами низкой частоты эндогенной опиоидной системы ствола головного мозга. Импульсные токи изменяют биоэлектрическую активность головного мозга, что приводит к изменению деятельности сосудодвигательного центра и проявляется нормализацией системной гемодинамики. Кроме того, выброс в кровь эндогенных опиодных пептидов активирует регенераторнорепаративные процессы в очаге воспаления.

Транскраниальная электроаналгезия - метод, обладающий выраженным седативным (при частоте до 200-300 Гц), транквилизирующим (при 800-900 Гц) и обезболивающим (выше 1000 Гц) эффектами.

Аппаратура и общие указания о выполнении процедур

Для проведения процедур транскраниальной электроаналгезии используют аппараты, генерирующие прямоугольные импульсы напряжением до 10 В с частотой 60-100 Гц, длительностью 3,5-4 мс: «ТРАНСАИР», «Этранс-1, -2, -3» - и напряжением до 20 В с частотой 150-2000 Гц («ЛЭНАР», «Би-ЛЭНАР»). Сила анальгетического эффекта увеличивается при включении дополнительной постоянной составляющей электрического тока. Оптимальным считают соотношение постоянного и импульсного тока 5:1-2:1.

При проведении процедуры пациент лежит на кушетке в удобном положении. Используют лобно-сосцевидную методику: раздвоенный катод с прокладками, смоченными тёплой водой или 2% раствором натрия бикарбоната, устанавливают в области надбровных дуг, а раздвоенный анод - под сосцевидными отростками. После выбора параметров транскраниальной электроаналгезии (частоты, длительности, скважности и амплитуды постоянной составляющей) амплитуду выходного напряжения плавно увеличивают до тех пор, пока у пациента не появится ощущение покалывания и лёгкого тепла под электродами. Длительность воздействия 20-40 мин. Курс лечения включает 10-12 процедур.

Для трансцеребральной электроаналгезии применяют и синусоидально-модулированные токи со следующими параметрами:

Длительность полупериодов 1:1,5;

Режим переменный;

Глубина модуляции 75%;

Частота 30 Гц.

Продолжительность процедуры 15 мин. Процедуры проводят ежедневно, курс лечения включает 10-12 манипуляций. При проведении процедуры используют электронную резиновую полумаску от аппарата для электросна, заменяя вилку штепсельным устройством для аппарата серии «Амплипульс».

Показания к лечению:

Невралгии черепных нервов;

Боли, обусловленные вертеброгенной патологией;

Фантомные боли;

Вегетодистония;

Стенокардия напряжения I и II функционального класса;

Язвенная болезнь желудка и двенадцатиперстной кишки;

Неврастения;

Нейродермит;

Переутомление;

Алкогольный абстинентный синдром;

Нарушение сна;

Метеопатические реакции. Противопоказания:

Общие противопоказания к физиотерапии;

Непереносимость тока;

Острые боли висцерального происхождения (приступ стенокардии, инфаркт миокарда, почечная колика, роды);

Закрытые травмы головного мозга;

Диэнцефальный синдром;

Таламический синдром;

Нарушение ритма сердца;

Повреждение кожи в местах наложения электродов.

Лечебные методики

При гипертонической болезни I и II стадии и ИБС для электросна применяют глазнично-ретромастоидальную методику с использованием прямоугольного импульсного тока частотой 5-20 Гц, продолжительностью от 30 мин до 1 ч, ежедневно. Курс лечения состоит из 12-15 процедур.

Транскраниальную электротранквилизацию проводят по лобноретромастоидальной методике с использованием прямоугольного импульсного тока частотой 1000 Гц, продолжительностью 30-45 мин ежедневно. Курс лечения состоит из 12-15 процедур.

При стабильной гипертонии применяют электросон с использованием прямоугольного импульсного тока с частотой 100 Гц (первые 5-6 процедур); затем переходят на частоту 10 Гц. Продолжительность процедур 30-45 мин. Курс лечения включает 10-12 ежедневных процедур.

При диэнцефальном синдроме и неврозах применяют электросон с использованием прямоугольного импульсного тока частотой 10 Гц продолжительностью от 30 мин до 1 ч, через день. Курс лечения состоит из 10-12 процедур.

Транскраниальную электротранквилизацию проводят по лобноретромастоидальной методике с использованием прямоугольного импульсного тока частотой 1000 Гц, продолжительностью 30-40 мин. Курс лечения включает 12-15 ежедневных процедур.

При травматической энцефалопатии применяют электросон по глазично-ретромастоидальной методике с использованием прямоугольного импульсного тока частотой 10 Гц продолжительностью от 30 мин до 1 ч, через день. Курс лечения включает 10-12 процедур.

Короткоимпульсная электроаналгезия

Короткоимпульсная электроаналгезия (чрескожная электронейростимуляция) - воздействие на болевой очаг очень короткими (20-500 мкс) импульсами тока, следующего пачками по 20-100 импульсов частотой от 2 до 400 Гц.

Длительность и частота следования импульсов тока, применяемых при короткоимпульсной электроаналгезии, очень сходны с соответствующими параметрами импульсов толстых миелинизированных Ар-волокон. В связи с этим поток ритмичной упорядоченной афферентации, создаваемый во время процедуры, возбуждает нейроны желатинозной субстанции задних рогов спинного мозга и блокирует на их уровне проведение ноцигенной информации. Возбуждение вставочных нейронов задних рогов спинного мозга приводит к выделению в них опиоидных пептидов. Анальгетический эффект усиливается при электроимпульсном воздействии на паравертебральные зоны и области отражённых болей.

Фибрилляция гладких мышц артериол и поверхностных мышц кожи, вызываемая электрическими импульсами, активирует процессы утилизации алгогенных веществ (брадикинин) и медиаторов (ацетилхолин, гистамин), выделяющихся при развитии болевого синдрома. Усиление локального кровотока активирует местные обменные процессы и местные защитные свойства тканей. Наряду с этим уменьшается периневральный отёк и восстанавливается угнетённая тактильная чувствительность в зонах локальной болезненности.

Аппаратура и общие указания о выполнении процедур

Для проведения процедур используют аппараты «Дельта-101 (-102, -103)», «Элиман-401», «Бион», «Нейрон», «Импульс-4» и др. При проведении процедур электроды накладывают и фиксируют

в области проекции болевого очага. По принципу их размещения различают периферическую электроаналгезию, когда электроды располагают в зонах болезненности, точках выхода соответствующих нервов или их проекции, а также в рефлексогенных зонах, и сегментарную электроаналгезию, при которой электроды размещают в области паравертебральных точек на уровне соответствующего спинномозгового сегмента. Чаще всего используют два вида короткоимпульсной электроаналгезии. В первом случае применяют импульсы тока с частотой 40-400 Гц силой до 5-10 мА, вызывая быструю (2-5 мин) аналгезию соответствующего метамера, сохраняющуюся не менее 1-1,5 ч. При воздействии на биологически активные точки (БАТ) используют импульсы тока силой до 15-30 мА, подаваемые с частотой 2-12 Гц. Гипоалгезия развивается через 15-20 мин и захватывает, помимо области воздействия, и соседние метамеры.

Параметры импульсных токов дозируют по амплитуде, частоте следования и скважности с учётом стадии развития болевого синдрома. Наряду с этим учитывают появление у больного ощущения гипоалгезии. Во время проведения процедуры у пациента не должно быть выраженных мышечных фибрилляций в области расположения электродов. Время воздействия - 20-30 мин; процедуры проводят до 3-4 раз в день. Продолжительность курса зависит от эффективности купирования болевого синдрома.

Показаниями к лечению служат болевые синдромы у пациентов с заболеваниями нервной системы (радикулит, неврит, невралгия, фантомные боли) и опорно-двигательного аппарата (эпикондилит, артрит, бурсит, растяжение связок, спортивная травма, переломы костей).

Противопоказания:

Непереносимость тока;

Общие противопоказания к физиотерапии;

Острые боли висцерального происхождения (приступ стенокардии, инфаркт миокарда, почечная колика, родовые схватки);

Заболевания оболочек головного мозга (энцефалит и арахноидит);

Неврозы;

Психогенные и ишемические боли;

Острый гнойный воспалительный процесс;

Тромбофлебит;

Острые дерматозы;

Наличие металлических осколков в зоне воздействия.

Диадинамотерапия

Диадинамотерапия (ДДТ) - метод электролечения, основанный на воздействии низкочастотным импульсным током постоянного направления полусинусоидальной формы с экспоненциальным задним фронтом частотой 50 и 100 Гц в различных комбинациях.

Для ДДТ характерен обезболивающий эффект. Анальгетический эффект ДДТ обусловлен процессами, развивающимися на уровне спинного и головного мозга. Раздражение ритмическим импульсным током большого количества нервных окончаний ведёт к появлению ритмически упорядоченного потока афферентных импульсов. Этот поток блокирует прохождение болевых импульсов на уровне желатинозной субстанции спинного мозга. Обезболивающему действию ДДТ способствуют также рефлекторное возбуждение эндорфинных систем спинного мозга, резорбция отёков и уменьшение сдавления нервных стволов, нормализация трофических процессов и кровообращения, устранение гипоксии в тканях.

Непосредственное влияние ДДТ на ткани организма мало отличается от влияния гальванического тока. Реакция отдельных органов, их систем и организма в целом обусловлена импульсным характером подводимого тока, изменяющего соотношение концентраций ионов у поверхности клеточных мембран, внутри клеток и в межклеточных пространствах. В результате изменяющихся ионного состава и электрической поляризации изменяются дисперсность коллоидных растворов клетки и проницаемость клеточных мембран, повышаются интенсивность обменных процессов и возбудимость тканей. Эти изменения в большей степени выражены у катода. Местные изменения в тканях, а также непосредственное действие тока на рецепторы вызывают развитие сегментарных реакций. На первый план выступает гиперемия под электродами, обусловленная расширением сосудов и увеличением притока крови. Кроме того, при воздействии ДДТ развиваются реакции, вызываемые импульсами тока.

Вследствие изменяющейся концентрации ионов у поверхности клеточных мембран изменяются дисперсность белков цитоплазмы и функциональное состояние клетки и ткани. При быстрых изменениях концентрации ионов мышечное волокно сокращается (при малой силе тока - напрягается). Это сопровождается усилением притока крови к возбуждённым волокнам (и к любому другому работающему органу) и интенсификацией обменных процессов.

Кровообращение усиливается и в участках тела, иннервируемых от одного и того же сегмента спинного мозга, в том числе и симметричной области. При этом усиливается приток крови к области воздействия, а также венозный отток, улучшается резорбционная способность слизистых оболочек полостей (плевральная, синовиальная, брюшинная).

Под влиянием ДДТ нормализуется тонус магистральных сосудов и улучшается коллатеральное кровообращение. ДДТ влияет на функции желудка (секреторная, экскреторная и моторная), улучшает секреторную функцию поджелудочной железы, стимулирует продукцию глюкокортикоидов корой надпочечников.

Диадинамические токи получают путём одно- и двухполупериодного выпрямления переменного сетевого тока частотой 50 Гц. Чтобы уменьшить адаптацию к воздействиям и повысить эффективность лечения, предложено несколько разновидностей тока, представляющих последовательное чередование токов частотой 50 и 100 Гц или чередование последних с паузами.

Однополупериодный непрерывный (ОН) полусинусоидальный ток частотой 50 Гц обладает выраженным раздражающим и миостимулирующим свойством, вплоть до тетанического сокращения мышц; вызывает крупную неприятную вибрацию.

Двухполупериодный непрерывный (ДН) полусинусоидальный ток частотой 100 Гц обладает выраженным анальгетическим и вазоактивным свойством, вызывает фибриллярные подёргива- ния мышц, мелкую разлитую вибрацию.

Однополупериодный ритмический (ОР) ток, посылки которого чередуют с паузами равной длительности (1,5 с), оказывает наиболее выраженное миостимулирующее действие во время посылок тока, сочетающееся с периодом полного расслабления мышц во время паузы.

Ток, модулированный коротким периодом (КП), - последовательное сочетание токов ОН и ДН, следующих равными посылками (1,5 с). Чередование существенно уменьшает адаптацию к воздействию. Этот ток сначала оказывает нейромиостимулирующее действие, а через 1-2 мин - анальгетический эффект; вызывает у пациента ощущение чередования крупной и мягкой нежной вибрации.

Ток, модулированный длинным периодом (ДП), - одновременное сочетание посылок тока ОН длительностью 4 с и

тока ДН длительностью 8 с. Нейромиостимулирующее действие таких токов уменьшается, но плавно нарастают анальгетический, сосудорасширяющий и трофический эффекты. Ощущения пациента аналогичны таковым при предыдущем режиме воздействия.

Однополупериодный волновой (ОВ) ток - серия импульсов однополупериодного тока с амплитудой, нарастающей от нуля до максимального значения в течение 2 с, сохраняющейся на этом уровне 4 с, а затем в течение 2 с уменьшающейся до нуля. Общая продолжительность посылки импульса 8 с, длительность всего периода - 12 с.

Двухполупериодный волновой (ДВ) ток - серия импульсов двухполупериодного тока с амплитудой, изменяющейся так же, как у тока ОВ. Общая продолжительность периода тоже составляет 12 с.

Диадинамический ток обладает вводящей способностью, что обусловливает его использование в методиках лекарственного электрофореза (диадинамофорез). Уступая гальваническому току по количеству вводимого лекарственного вещества, он способствует его более глубокому проникновению, нередко потенцируя его действие. Лучше всего назначать диадинамофорез тогда, когда преобладает болевой синдром.

Аппаратура и общие указания о выполнении процедур

Для проведения процедур ДДТ применяют аппараты, генерирующие посылки импульсов разной продолжительности, частоты и формы с различной длительностью пауз между посылками, такие как «Тонус-1 (-2, -3)», «СНИМ-1», «Диадинамик ДД-5А» и др.

При проведении процедуры ДДТ гидрофильные прокладки электродов необходимого размера смачивают тёплой водопроводной водой, отжимают, в карманы прокладок или поверх них помещают металлические пластины. Чашечные электроды размещают в области максимально выраженных болевых ощущений и во время проведения процедуры удерживают рукой за ручку электродержателя. На болевую точку помещают электрод, соеди- нённый с отрицательным полюсом аппарата - катодом; другой электрод такой же площади помещают рядом с первым на расстоянии, равном его поперечнику или более. При электродах разной площади меньший электрод (активный) помещают на болевую точку, больший (индифферентный) располагают на значительном

расстоянии (в проксимальном отделе нервного ствола или конечности). При ДДТ на область мелких суставов кисти или стопы в качестве активного электрода можно использовать воду: ею наполняют стеклянную или эбонитовую ванночку и соединяют ванночку с отрицательным полюсом аппарата через угольный электрод.

В зависимости от тяжести патологического процесса, стадии болезни, реактивности больного (свойство ткани дифференцированно отвечать на действие внешнего раздражителя; в данном случае - действие физиотерапевтического фактора или изменения внутренней среды организма), индивидуальных особенностей организма и решаемых терапевтических задач применяют тот или иной вид ДДТ, а также их сочетание. Чтобы уменьшить привыкание и постепенно нарастить интенсивность воздействия, на одном и том же участке тела применяют 2-3 вида тока ДДТ.

Силу тока подбирают индивидуально, учитывая субъективные ощущения пациента (лёгкое покалывание, жжение, чувство сползания электрода, вибрации, прерывистого сжатия или сокращения мышц в области воздействия). При ДДТ болевого синдрома силу тока подбирают так, чтобы пациент ощущал выраженную безболезненную вибрацию (от 2-5 до 15-30 мА). Во время процедуры отмечается привыкание к действию ДДТ; это необходимо учитывать и при необходимости усиливать интенсивность воздействия. Продолжительность процедуры составляет 4-6 мин на одном участке, суммарное время воздействия 15-20 мин. Курс лечения включает 5-10 ежедневных процедур.

Показания к лечению:

Неврологические проявления остеохондроза позвоночника с болевыми синдромами (люмбаго, радикулит, корешковый синдром), двигательными и сосудисто-трофическими нарушениями;

Невралгии, мигрень;

Заболевания и повреждения опорно-двигательного аппарата, миозиты, артрозы, периартриты;

Заболевания органов пищеварения (язвенная болезнь желудка и двенадцатиперстной кишки, панкреатит);

Хронические воспалительные заболевания придатков матки;

Гипертоническая болезнь в начальных стадиях. Противопоказания:

Непереносимость тока;

Общие противопоказания к физиотерапии;

Острые воспалительные процессы (гнойные);

Тромбофлебит;

Нефиксированные переломы;

Кровоизлияния в полости и ткани;

Разрывы мышц и связок.

Лечебные методики

Диадинамотерапия при лечении невралгии тройничного нерва

Применяют малые круглые электроды. Один электрод (катод) устанавливают на месте выхода одной из ветвей тройничного нерва, второй - в зоне иррадиации боли. Воздействуют током ДН 20-30 с, а затем током КП в течение 1-2 мин. Силу тока постепенно увеличивают до тех пор, пока пациент не ощутит выраженную безболезненную вибрацию; курс лечения включает до шести ежедневных процедур.

Диадинамотерапия при лечении мигрени

Положение пациента - лёжа на боку. Воздействуют круглыми электродами на ручном держателе. Катод устанавливают на 2 см сзади от угла нижней челюсти на область верхнего шейного симпатического узла, анод - на 2 см выше. Электроды располагают перпендикулярно поверхности шеи. Применяют ток ДН в течение 3 мин; силу тока постепенно увеличивают до тех пор, пока пациент не ощутит выраженную вибрацию. Воздействие проводят с двух сторон. Курс состоит из 4-6 ежедневных процедур.

Диадинамотерапия при головных болях, связанных с гипотензивным состоянием, атеросклерозом сосудов головного мозга (по В.В. Синицину)

Положение пациента - лёжа на боку. Применяют малые двойные электроды на ручном держателе. Электроды располагают в височной области (на уровне брови) так, чтобы височная артерия находилась в межэлектродном пространстве. Применяют ток КП в течение 1-3 мин, с последующим изменением полярности на 1-2 мин. На протяжении одной процедуры на правую и левую височные артерии воздействуют поочерёдно. Процедуры проводят ежедневно или через день, курс лечения состоит из 10-12 процедур.

Диадинамотерапия на область жёлчного пузыря

Пластинчатые электроды располагают следующим образом: активный электрод (катод) площадью 40-50 см 2 помещают на область проекции жёлчного пузыря спереди, второй электрод (анод) размером 100-120 см 2 располагают поперечно на спине.

Применяют ОВ в постоянном или переменном режиме работы (в последнем длительность периода 10-12 с, время нарастания переднего фронта и спада заднего фронта - по 2-3 с). Силу тока увеличивают до тех пор, пока под электродами не начнутся выраженные сокращения мышц передней брюшной стенки. Продолжительность процедуры - 10-15 мин ежедневно или через день, курс лечения состоит из 10-12 процедур.

Диадинамотерапия на мышцы передней брюшной стенки Электроды площадью по 200-300 см 2 располагают на брюшной стенке (катод) и в пояснично-крестцовой области (анод). Параметры ДДТ: ОВ-ток в постоянном режиме работы; силу тока увеличивают до появления выраженных сокращений брюшной стенки, время воздействия 10-12 мин. Курс лечения включает до 15 процедур.

Диадинамотерапия на область промежности

Электроды площадью по 40-70 см 2 располагают следующим образом:

Над лонным сочленением (анод) и на промежность (катод);

Над лонным сочленением и на область промежности под мошонкой (полярность зависит от цели воздействия);

Над лонным сочленением (катод) и на пояснично-крестцовый отдел позвоночника (анод).

Параметры ДДТ: однополупериодный ток в переменном режиме работы, длительность периода 4-6 с. Можно использовать ритм синкопа при переменном режиме работы. При хорошей переносимости силу тока увеличивают, пока пациент не ощутит выраженную вибрацию. Продолжительность процедуры до 10 мин ежедневно или через день, курс лечения включает до 12-15 процедур.

Воздействие диадинамотерапии на половые органы женщины

Электроды площадью по 120-150 см 2 располагают поперечно над лонным сочленением и в крестцовой области. Параметры ДДТ: ДН со сменой полярности - 1 мин; КП - по 2-3 мин, ДП - по 2-3 мин. Процедуры проводят ежедневно или через день. Курс лечения состоит из 8-10 процедур.

Диадинамотерапия при заболеваниях плечевого сустава

Пластинчатые электроды располагают поперечно на передней и задней поверхности сустава (катод - на месте проекции боли).

Параметры ДДТ: ДВ (или ДН) - 2-3 мин, КП - 2-3 мин, ДП -

3 мин. При болях под обоими электродами в середине воздействия

каждым видом тока полярность меняют на обратную. Силу тока увеличивают, пока пациент не ощутит выраженную безболезненную вибрацию. На курс назначают 8-10 процедур, проводимых ежедневно или через день.

Диадинамотерапия при ушибе или растяжении связок сустава

Круглые электроды устанавливают с обеих сторон сустава на наиболее болезненные точки. Воздействуют током ДН в течение 1 мин, а затем - КП по 2 мин в прямом и обратном направлении. Силу тока увеличивают, пока пациент не ощутит максимально выраженную вибрацию. Процедуры проводят ежедневно. Курс лечения состоит из 5-7 процедур.

Электростимуляция

Электростимуляция - метод лечебного воздействия импульсными токами низкой и повышенной частоты, применяемый для восстановления деятельности органов и тканей, утративших нормальную функцию, а также для изменения функционального состояния мышц и нервов. Применяют отдельные импульсы; серии, состоящие из нескольких импульсов, а также ритмические импульсы, чередующиеся с определённой частотой. Характер вызываемой реакции зависит от:

Интенсивности, конфигурации и длительности электрических импульсов;

Функционального состояния нервно-мышечного аппарата. Указанные факторы, тесно связанные между собой, лежат в

основе электродиагностики, позволяя подобрать оптимальные параметры импульсного тока для электростимуляции.

Электростимуляция поддерживает сократительную способность мышц, усиливает кровообращение и обменные процессы в тканях, препятствует развитию атрофии и контрактур. Процедуры, проводимые в правильном ритме и при соответствующей силе тока, создают поток нервных импульсов, которые поступают в ЦНС, что в свою очередь способствует восстановлению двигательных функций.

Показания

Наиболее широко электростимуляцию применяют при лечении заболеваний нервов и мышц. К числу таких заболеваний относят различные парезы и параличи скелетной мускулатуры, как вялые, вызванные нарушениями периферической нервной систе-

мы и спинного мозга (невриты, последствия полиомиелита и травм позвоночника с поражением спинного мозга), так и спастические, постинсультные. Электростимуляция показана при афонии на почве пареза мышц гортани, паретическом состоянии дыхательных мышц и диафрагмы. Её применяют также при атрофии мышц, как первичной, развившейся вследствие травм периферических нервов и спинного мозга, так и вторичной, возникшей в результате длительной иммобилизации конечностей в связи с переломами и костно-пластическими операциями. Электростимуляция показана при атонических состояних гладкой мускулатуры внутренних органов (желудок, кишечник, мочевой пузырь). Метод применяют при атонических кровотечениях, для предупреждения послеоперционных флеботромбозов, профилактики осложнений при длительной гиподинамии, для повышения тренированности спортсменов.

Электростимуляцию широко используют в кардиологии. Одиночный электрический разряд высокого напряжения (до 6 кВ), так называемая дефибрилляция, способен восстановить работу остановившегося сердца и вывести больного с инфарктом миокарда из состояния клинической смерти. Вживляемый миниатюрный прибор (кардиостимулятор), подающий к сердечной мышце больного ритмические импульсы, обеспечивает многолетнюю эффективную работу сердца при блокаде его проводящих путей.

Противопоказания

К противопоказаниям относят:

Желчнокаменную и почечнокаменную болезнь;

Острые гнойные процессы в органах брюшной полости;

Спастическое состояние мышц.

Электростимуляция мимических мышц противопоказана при повышении их возбудимости, а также при ранних признаках контрактуры. Электростимуляция мышц конечностей противопоказана при анкилозах суставов, вывихах до момента их вправления, переломах костей до их консолидации.

Общие указания о выполнении процедур

Процедуры электростимуляции дозируют индивидуально по силе раздражающего тока. Во время процедуры у пациента должны наступать интенсивные, видимые, но безболезненные сокращения мышц. Пациент не должен испытывать неприятных ощущений. Отсутствие сокращений мышц или болезненные ощущения свидетельствуют о неправильном расположении электродов или о неадекватности применяемого тока. Продолжительность процеду-

ры индивидуальна и зависит от тяжести патологического процесса, числа поражённых мышц и методики лечения.

В физиотерапии электростимуляцию применяют в основном для того, чтобы воздействовать на повреждённые нервы и мышцы, а также на гладкую мускулатуру стенок внутренних органов.

Электродиагностика

Электродиагностика - метод, позволяющий определять функциональное состояние периферического нервно-мышечного аппарата при помощи некоторых форм тока.

При раздражении током нерва или мышцы их биоэлектрическая активность изменяется и формируются спайковые ответы. Изменяя ритм раздражения, можно обнаружить постепенный переход от одиночных сокращений к зубчатому тетанусу (когда мышца успевает частично расслабиться и вновь сокращается под действием очередного импульса тока), а затем - и к полному тетанусу (когда мышца совершенно не расслабляется вследствие частого следования импульсов тока). Указанные реакции нервномышечного аппарата при раздражении его постоянным и импульсными токами легли в основу классической электродиагностики и электростимуляции.

Основная задача электродиагностики - определение количественных и качественных изменений реакции мышц и нервов на раздражение тетанизирующим и прерывистым постоянным током. Повторные электродиагностические исследования позволяют установить динамику патологического процесса (восстановление или углубление поражения), оценить эффективность лечения и получить необходимые сведения для прогноза. Кроме того, правильная оценка состояния электровозбудимости нервно-мышечного аппарата позволяет подобрать оптимальные параметры тока для электростимуляции.

Электростимуляция поддерживает сократительную способность и тонус мышц, улучшает кровообращение и обмен веществ в пора- жённых мышцах, замедляет их атрофию, восстанавливает высокую лабильность нервно-мышечного аппарата. При электростимуляции на основании данных электродиагностики выбирают форму импульсного тока, частоту следования импульсов и регулируют их амплитуду. При этом добиваются выраженных безболезненных ритмичных сокращений мышц. Длительность используемых импульсов 1-1000 мс. Сила тока для мышц кисти и лица состав-

ляет 3-5 мА, а для мышц плеча, голени и бедра - 10-15 мА. Основной критерий адекватности - получение изолированного безболезненного сокращения мышцы максимальной величины при воздействии током минимальной силы.

Аппаратура и общие указания о выполнении процедур

Для проведения электродиагностики применяют аппарат «Нейропульс». При электродиагностике используют:

Прерывистый постоянный ток с длительностью импульса прямоугольной формы 0,1-0,2 с (при ручном прерывании);

Тетанизирующий ток с импульсами треугольной конфигурации, частотой 100 Гц и длительностью импульсов 1-2 мс;

Импульсный ток прямоугольной формы и импульсный ток экспоненциальной формы с частотой импульсов, регулируемой в диапазоне 0,5-1200 Гц, и длительностью импульсов, регулируемой в пределах 0,02-300 мс.

Исследование электровозбудимости проводят в тёплом, хорошо освещённом помещении. Мышцы исследуемой области и здоровой (симметричной) стороны должны быть максимально расслаблены. При проведении электродиагностики один из электродов (направляющий, площадью 100-150 см 2) со смоченной гидрофильной прокладкой помещают на область грудины или позвоночника и соединяют с анодом аппарата. Второй электрод, предварительно обтянутый гидрофильной тканью, периодически смачивают водой. В процессе электродиагностики референтный электрод устанавливают на двигательной точке исследуемого нерва или мышцы. Эти точки соответствуют проекции нервов в месте наиболее поверхностного их расположения или местам входа двигательного нерва в мышцы. На основании специальных исследований Р. Эрб в конце XIX в. составил таблицы с указанием типичного расположения двигательных точек, где мышцы сокращаются при наименьшей силе тока.

Для мионейростимуляции применяют аппараты «Миоритм», «Стимул-1». При незначительно выраженных поражениях нервов и мышц для электростимуляции используют также аппараты для ДДТ и амплипульс-терапии (в выпрямленном режиме). Стимуляцию внутренних органов проводят с помощью аппарата «Эндотон-1».

Аппарат «Стимул-1» генерирует три вида импульсных токов. Для электростимуляции этим аппаратом применяют пластинчатые электроды с гидрофильными прокладками различной площади,

а также полосные электроды специальной конструкции. Кроме того, используют электроды на рукоятке с кнопочным прерывателем. Местоположение точек отмечает врач во время проведения электродиагностики.

Для электростимуляции нервов и мышц при выраженных патологических изменениях применяют биполярную методику, при которой два равновеликих электрода площадью по 6 см 2 располагают следующим образом: один электрод (катод) - на двигательной точке, другой (анод) - в области перехода мышцы в сухожилие, в дистальном отделе. При биполярной методике оба электрода располагают вдоль стимулируемой мышцы и фиксируют бинтом так, чтобы сокращение мышцы было беспрепятственным и видимым. При электростимуляции у пациента не должно возникать неприятных болевых ощущений; после сокращения мышцы необходим её отдых. Чем больше степень поражения мышцы, тем реже вызываемые сокращения (от 1 до 12 сокращений в минуту), тем продолжительнее отдых после каждого сокращения. По мере восстановления движений мышцы частоту сокращений постепенно увеличивают. При активной стимуляции, когда ток включают одновременно с попыткой больного произвести волевое сокращение мышцы, число и продолжительность импульсов регулируют ручным модулятором.

Силу тока регулируют во время процедуры, добиваясь выраженных безболезненных сокращений мышц. Сила тока колеблется в зависимости от группы мышц - от 3-5 мА до 10-15 мА. Продолжительность процедуры и курса электростимуляции мышц зависит от характера поражения мышцы и степени его тяжести. Процедуры проводят 1-2 раза в день или через день. Курс лечения 10-15 процедур.

Показания к электростимуляции:

Вялые парезы и параличи, связанные с травмой нерва, специфическим или неспецифическим воспалением нерва, токсическим поражением нерва, дегенеративно-дистрофическими заболеваниями позвоночника;

Центральные парезы и параличи, связанные с нарушением мозгового кровообращения;

Атрофия мышц при длительной гиподинамии, иммобилизационных повязках;

Истерические парезы и параличи;

Послеоперационные парезы кишечника, различные дискинезии желудка, кишечника, желчевыводящих и мочевыводящих путей, камни мочеточника;

Стимуляция мышц для улучшения периферического артериального и венозного кровообращения, а также лимфооттока;

Увеличение и укрепление мышечной массы спортсменов. Противопоказания:

Непереносимость тока;

Общие противопоказания к физиотерапии;

Острые воспалительные процессы;

Контрактура мимических мышц;

Кровотечение (кроме дисфункциональных маточных);

Переломы костей до иммобилизации;

Вывихи суставов до вправления;

Анкилозы суставов;

Переломы костей до их консолидации;

Желчнокаменная болезнь;

Тромбофлебит;

Состояние после острого нарушения мозгового кровообращения (первые 5-15 дней);

Шов нерва, сосуда в течение первого месяца после операции;

Спастические парезы и параличи;

Нарушения сердечного ритма (мерцательная аритмия, политопная экстрасистолия).

Рассказать друзьям