Спутниковые системы управления и контроля (ССУ и К), задачи и принцып организации. Бортовая аппаратура ИСЗ (искусственный спутник земли) спутниковых систем управления и контроля

💖 Нравится? Поделись с друзьями ссылкой

Более года назад Беларусь получила в космическом пространстве свое второе «представительство» - спутник Белинтерсат-1 был выведен на орбиту китайской ракетой-носителем «Чаньчжэн-3В» (в переводе - «Великий поход»). От первого отечественного космического аппарата он отличается кардинально. В первую очередь по назначению, задача сателлита - оказывать телекоммуникационные услуги: Спутниковое теле- и радиовещание, доступ в интернет... Для управления спутником в Станьково был создан наземный комплекс управления и небольшой «космический городок». Накануне Дня космонавтики корреспонденты «Звязды» побывали в «белорусском Королёве» и понаблюдали, как аппаратом успешно управляют недавние студенты.

«Казармы» для инженеров

Это здание - бывшая казарма, - показывает на новенький трехэтажный дом начальник Центра управления полетом спутника Олег Винярский. - От нее оставили, по сути, только несущие конструкции, все остальное переделали. Получили 32 качественные современные квартиры, в них живут многие сотрудники ЦУП, в том числе и я. В общем, для работы центра здесь построили всю инфраструктуру. Мы имеем собственную подстанцию, которая питается от двух независимых городских линий. Даже если вдруг случится такое, что оба источника энергии выйдут из строя, у нас есть две автоматические дизель-генераторные установки, которые срабатывают через 6-8 секунд отсутствия питания. Есть и собственная котельная, которая обеспечивает теплой водой основное здание и общежитие, своя система пожаротушения в каждом помещении, свое кондиционирование, гаражи, склады... Проще говоря, мы можем работать абсолютно автономно даже в самых неблагоприятных условиях.

Зачем такие расходы? Все просто: одна из главных характеристик спутника связи - надежность. Заказчики, которые платят деньги за услуги Белинтерсат-1, должны быть уверены, что сигнал всегда стабильно дойдет до потребителя, независимо от внешних факторов. Кроме того, не секрет, что сателлит играет не последнюю роль в системе военной защиты страны.

Основное здание находится в нескольких шагах от общежития. За ним - идеально ровная площадка с газоном. Здесь располагается целый комплекс из огромных антенн, каждая из которых имеет свое назначение: 11-метровая для услуг DTH, проще говоря - спутникового телевещания, 13-метровая - для контроля качества сигнала в C-диапазоне и управления самим сателлитом, 9-метровая - для тех же целей в KU-диапазоне, еще две меньшего размера - для передачи данных, в том числе доступа в интернет. Таким образом, например, сотрудники белорусских посольств за рубежом могут всегда иметь безопасный доступ в интернет без посредников. Еще есть функции IP-телефонии и так называемого стриминга, или прямой трансляции видео в интернет - в последний раз ее использовали для показа чемпионатов по таэквондо.

Под каждой антенной находится техническое помещение, где установлены системы пожаротушения и контроля микроклимата. Есть здесь и своя метеостанция, так как погода может повлиять на оказание услуг - под воздействием температуры, ветра и влаги антенны искажают сигнал, это заставляет увеличивать мощность передатчика. В Станьково работает и собственная служба дератизации в лице... рыжего кота. Шутки шутками, но мыши представляют серьезную опасность для начиненного тысячами проводов здания, поэтому помощи со стороны усатого охранника здесь только рады.

Хьюстон, у нас нет проблем!

Если спутник БГА имеет собственную орбиту и траекторию движения, то Белинтерсат-1 находится на так называемой геостационарной орбите - то есть, он почти не движется относительно земной поверхности, так как его скорость равна скорости оборота планеты вокруг оси. Спутник находится за 36 тысяч километров над экватором примерно на 51,5 градуса восточной долготы (это район Индийского океана неподалеку от берегов Африки), а потому может передавать сигнал в любую точку Восточного полушария. Тем не менее сателлит требует постоянного присмотра, так как на него влияет гравитация самых различных объектов. Пять сотых градуса - именно такой «люфт» разрешен для Белинтерсат-1. В метрической системе это примерно 75 километров - не слишком много в орбитальных масштабах.

Именно надзором и манипуляциями с «курсом» спутника и занимается центр управления полетами. Достаточно большое помещение на первом этаже основного здания, конечно, вряд ли может сравниться с ЦУП в Королеве и Хьюстоне, но внешне все напоминает об этих знаковых для космонавтики местах: огромные часы со временем в разных поясах, ряды столов с множеством компьютеров (кстати, где еще в Беларуси найдешь клавиатуру без кириллицы, но с иероглифами), центральный монитор с картой мира и, конечно, внимательные сотрудники, которые следят за информацией на дисплее.

Моя работа заключается в мониторинге сведений со спутника - так называемой телеметрии, - объясняет инженер отдела анализа и планирования Валентина ПОПИША . - Анализируем ее за разные периоды, чтобы увидеть определенный тренд. Четыре раза за смену провожу проверку полезной нагрузки - все ли работает нормально, не превышают ли клиенты разрешенный уровень мощности. Но самое интересное - подготовка процедур по управлению спутником. Как раз сегодня будет одна из них - идет сезон затмений, и Солнце воздействует на земной датчик. Чтобы исключить возможность ошибок в замерах и перехода аппарата в аварийный режим, нам нужно будет отключить этот индикатор. Если спутник выходит из «бокса» - разрешенной траектории, проводим маневры для возвращения. Но случается это редко, в среднем раз в две недели.

Перед аналитиком - сразу четыре монитора, так как иногда приходится просматривать десятки графиков и таблиц. Работа, безусловно, напряженная, тем более, что одна смена здесь тянется сразу 12 часов.

Две ночные, две дневные смены, после чего - четыре дня выходных. Одновременно на перемене в ЦУП находится всего три специалисты, именно на их плечах лежит ответственность за «выживаемость» спутника. Всего же в наземном комплексе управления работает 52 человека.

Последней инстанции, принимающей окончательные решения, здесь не существует, - говорит Олег Винярский. - Все делается только коллегиально, потому что один человек всегда может ошибиться. Конечно, есть еще техподдержка производителя, куда можно обратиться за консультацией - они не заинтересованы в потере аппарата, так как для них это тоже вопрос имиджа.

Миллионы в руках молодежи

Первое, что бросается в глаза в наземном комплексе управления спутником, - средний возраст сотрудников. По словам Олега Винярского, это примерно 25 лет. Еще до запуска Белинтерсат-1 делегация из 25 человек отправилась на учебу в Китайскую аэрокосмическую академию. Там с ними работали создатели спутника, которые учили белорусов тонкостям «космического дела» на технике, близкой по характеристикам к будущему белорусского аппарата. Поэтому никакого мандража во время передачи управления в Станьково не было - опыта хватало у всех.

Что касается новых сотрудников, то в здании есть все для их обучения. Например, симулятор ЦУП - полная копия помещения, о котором шла речь выше. Единственное отличие - здесь правят не реальным спутником, а виртуальным. На улице есть такие же «тренировочные» антенны, на которых новички практикуются в настройке, выходе на связь со спутником и других процедурах.

Мы отслеживаем состояние оборудования на Белинтерсат-1, поддерживаем его работоспособность, работаем с клиентами, - говорит начальник отдела мониторинга и управления полезной нагрузкой Центра наземного применения спутника Юрий Бобров . - В первую очередь аппарат ориентирован на международный рынок, поэтому много общаемся с иностранцами. Без проблем берем на практику студентов, как раз сейчас стажируется молодежь из БГУ. Все это инженеры, которым нужно не только решать разного рода технические проблемы, но и работать с клиентами. Никаких проблем не возникает, многие ездят на стажировки за границу, поэтому опыта молодой команде хватает.

Белинтерсат-1 создан на китайской платформе DFH-4, но это не значит, что аппарат - чужая разработка.

Мы не просто эксплуатируем чужую технику, - объясняет начальник ЦУП. - Сотрудники принимали участие в создании этого здания вместе с китайцами, монтировали, подключали и тестировался оборудование, прокладывали кабели... Ездили на завод во время сборки спутника, инспектировали процесс производства, разговаривали с конструкторами, высказывали свои предложения. Поэтому и сам спутник, и наземный комплекс управления по полному праву могут считаться белорусскими.

Во время орбитальных маневров на мощном двигателе было использовано 60 процентов топлива - это неплохой показатель, так как двигатели малой тяги имеют гораздо меньший расход. Первоначально Белинтерсат-1 был рассчитан на 15 лет работы, но, по утверждению специалистов ЦУП, его может хватить и на больший срок - все благодаря экономному и сберегательному подходу во время маневров.

Если изначально спутник был во многом проектом престижа, то сейчас мы понимаем, что это неплохой способ получения денег, - говорит Олег Винярский. - Кроме того, если ты показываешь, что можешь оправдать такие большие вложения, дорожишь доверенным тебе оборудованием, умеешь им правильно пользоваться, то создаешь себе определенный имидж. Уже сейчас мы работаем над вопросом международного технического сотрудничества, имеем ряд подписанных меморандумов с Гонконгом, Нигерией, Казахстаном. Цель - рассказать о своем опыте и перенять зарубежный, ведь грош цена тем знаниям, которыми вы не готовы делиться. В будущем вообще планируем создать единую систему подготовки кадров, основанную на стажировке в зарубежных компаниях. Мы хотим, чтобы квалификационные требования были повсюду одинаковыми, и мы могли без проблем брать к себе на стажировку специалистов из-за рубежа и отправлять взамен своих. Таким образом, мы будем всегда обеспечены качественными кадрами, так же, как крупные космические державы, которые тратят на это много денег.

Спутник в формате «нано»

Наземная инфраструктура, которая была создана для обеспечения деятельности первого белорусского космического аппарата, может быть эффективно использована для управления эксплуатацией второго спутника дистанционного зондирования Земли, работа над которым уже началась. Об этом сообщил директор УП «Геоинформационные системы» Сергей ЗОЛОТОЙ. Работы по созданию ведутся совместно с Российской Федерацией, процесс проходит в штатном режиме, но о результатах говорить еще рано.

Еще в прошлом году мы начали выполнять проект по развитию наземной инфраструктуры, - сказал специалист. - Достаточно сказать, что приемная станция, которая была создана еще 12 лет назад, прошла процедуру продления срока эксплуатации и теперь может использоваться еще 10 лет. Для этого была проведена замена электроники и механических узлов, которые отработали свой ресурс. Все работы на сегодняшний день завершены.

Кроме того, по словам Сергея Золотого, в этом году Беларусь планирует запустить университетский наноспутник, разработанный в БГУ. Такой аппарат по техническим характеристикам похож на своих «больших братьев», но имеет небольшие размер (20x20x10 см) и вес (всего 2 кг). Соответственно, несравненно ниже и стоимость спутника. В БГУ создан центр управления и станция приема, работать техника будет в любительском радиодиапазоне.

Наша задача сейчас - не только создавать спутники, но и разрабатывать механизмы по применению этих технологий в различных ответвлениях, - подчеркнул руководитель аппарата Национальной академии наук, академик Петр ВИТЯЗЬ. - Мы кооперуемся с министерствами и ведомствами страны, взаимодействуем с 20 отечественными и 40 российскими предприятиями. Микроэлектроника, информационные технологии, новые материалы - это те направления, которые развиваются благодаря достижениям в космической сфере. Кроме того, нам вместе с Министерством образования нужно развивать систему подготовки кадров для этой ветви, в том числе и при помощи наноспутников

Минск - Дзержинский район - Минск

Фото Надежды БУЖАН

Система относится к телеметрии, слежению и управлению спутников и, в частности, для спутников, используемых в глобальных мобильных системах связи, применяемых ячеистую технологию. Технический результат - обеспечение телеметрии, слежения и управления (TTC) спутников системы для спутниковых ячеечных систем связи, использующей один абонентский канал связи речь/данные для передачи данных TTC на спутник и через один спутник на другой спутник. Для этого глобальный позиционирующий приемник положения (GPS) на борту каждого спутника выдает сигналы управления положением на бортовую спутниковую подсистему управления и приемник положения сообщает текущую информацию на наземную станцию по ячеечному абонентскому каналу данных. 2 с. и 17 з.п.ф-лы, 3 ил.

Изобретение относится к телеметрии, слежению и управлению спутников и, в частности, для спутников, используемых в глобальных мобильных системах связи, применяющих ячеистую технологию. В современном космическом корабле или спутниках для спутниковых систем используется TTC транспондер, который является отдельным от системы связи речь/ данные пользователя для таких спутников. Эти транспондеры TTC в основном выдают команды управления, посылаемые на космический корабль с фиксированной наземной станции. Телеметрическая и следящая информация также поступает от космического корабля на наземную станцию по транспондеру TTC. Таким образом, для такой связи требуется двухсторонняя транспондерная связь между каждым спутником и наземной станцией. Телеметрические данные, поступающие со спутника, информируют оператора сети о положении и состоянии спутника. Например, телеметрические данные могут содержать информацию об оставшемся топливе ракет движения, так что можно произвести оценку полезной жизни спутника. Кроме того, производят слежение за критическим напряжением и величиной тока, поступающими в качестве телеметрических данных, которые позволяют оператору определять, правильно или нет работают схемы спутника. Следящая информация содержит кратковременные данные, которые позволяют определять расположение спутника. Более конкретно в данной спутниковой системе используется транспондер TTC на борту спутника для посылки тонового сигнала вниз на базовую станцию для обеспечения динамического диапазона и номинального диапазона спутника. Высота и угол наклона орбиты спутника могут быть вычислены на основании этой информации оператором наземной станции. Тоновый сигнал может быть модулирован для обеспечения более высокой степени точности при определении динамического диапазона и номинального диапазона. Наземная станция выдает команды управления в ответ на следящие или телеметрические данные на спутник, которые могут использоваться для регулирования орбиты спутника путем включения двигателя спутника. Кроме того, могут выдаваться другие независимые команды управления для перепрограммирования работы спутника при управлении другими функциями спутника. Информация TTC в основном кодируется для устранения нежелательной интерференции от сигналов других операторов. В известных системах можно было в основном только обмениваться информацией TTC со спутником, когда спутник находится в прямой видимости с фиксированной наземной станции. Также известные связи TTC осуществлялись между конкретной фиксированной наземной станцией и ее спутником и, например, не обеспечивали линию связи с другими спутниками. Транспондерные линии связи TTC, которые отделены от каналов речь/ данные, в настоящее время используются в сотнях спутниках. Отдельные транспондеры в основном используются, поэтому обрабатываемая ими информация в основном отличается по происхождению от информации в каналах связи пользователя. Более конкретно информация TTC может быть по преобладанию в цифровой форме, тогда как связь речь/ данные в некоторых известных спутниковых системах имеет аналоговую форму, для чего требуется вся имеющаяся полоса канала связи речь/ данные пользователя. Кроме того, скорость данных для сигналов TTC, в основном намного ниже, чем у данных пользователя. К сожалению, использование предшествующих систем, имеющих отдельные транспондеры для передачи данных TTC, приводит к некоторым проблемам. Эти известные системы не способны на мобильную работу TTC, Даже в созвездиях спутников, когда каналы речь/ данные абонента взаимосвязаны между различными спутниками, такая мобильная работа TTC, не получается из-за невзаимосвязи ответчиков TTC. Мобильные операции TTC успешны для отыскания и устранения неисправностей или для ситуаций, когда оператор системы должен оказаться в любом из различных местоположений. Также каждый спутник имеет только один ответчик TTC. который имеет тенденцию к высокой цене, потому что существенно, чтобы такой ответчик позволял осуществить надежное управление спутника соответствующей наземной станцией. Кроме того, в этих ответчиках используется электрическая энергия, полученная от бортовой системы выработки энергии, в которой обычно используются солнечные элементы и батареи. Также за счет использования отдельных ответчиков TTC нежелательно возрастает вес известных спутниковых систем и возрастает стоимость изготовления, испытания и вывода таких спутников на орбиту. Сущность изобретения

В соответствии с этим целью настоящего изобретения является создание системы TTC, в которой используется канал речь/ данные для передачи данных TTC, а следовательно, не требуется ответчик, отдельный от оборудования канала связи данные/ речь абонента. Другой целью является создание системы TTC, которая подходит для спутников, применяемых в глобальных, мобильный задачах элементной связи. В одном из вариантов изобретения система управления включена в состав спутниковой системы связи, имеющей, по меньшей мере, один спутник с приемопередатчиком, обеспечивающим множество каналов связи для установления связи между множеством абонентов. Система управления включает в себя спутниковую подсистему на борту каждого спутника и наземную станцию. Спутниковая подсистема управляет функциями спутника. Один из каналов связи абонента соединен с наземной станцией и со спутниковой подсистемой управления для установления связи TTC, так, чтобы команды могли передаваться на спутниковую подсистему управления, которая реагирует управлением заданной функции спутника. Система управления также включает в себя блок датчиков на борту спутника для измерения заданных режимов на спутнике и обеспечения передачи телеметрических данных по каналу связи абонента на наземную станцию. Кроме того, система управления также может содержать приемник положения на борту спутника для слежения и выдачи текущих данных спутника. Текущие данные подаются по каналу связи абонента так, чтобы эти текущие данные посылались со спутника на наземную станцию. Также текущие данные могут подаваться на подсистему управления спутника для обеспечения автоматического бортового управления курсом спутника. На фиг.1 показана ячеистая диаграмма, создаваемая одним спутником в многоспутниковой ячеистой системе связи, на фиг. 2 показана перекрестная связь между наземной станцией управления и множеством спутников, на фиг.3 показана блок-схема электронной системы для наземной станции управления и спутника. Спутник 10 содержит множество комбинаций передатчик-приемник данных абонента, далее называемых приемопередатчиками, солнечные приемники 12, передающие антенны 14 и приемные антенны 16. Передатчики приемопередатчиков используют отдельные передающие антенны 14 для одновременного излучения множества движущихся ячеек, образующих диаграмму 18 на части поверхности Земли. Каждая отдельная ячейка типа ячейки 20 на диаграмме 18 также содержит воздушное пространство над Землей и может быть охарактеризована как коническая ячейка. Оператор системы наземной станции 22, хотя и являющейся мобильной, в основном рассматривается в качестве фиксированной точки на Земле относительно быстро движущегося спутника 10, который может перемещаться со скоростью 17000 миль в час. Ячейки всегда находятся в движении, потому что непрерывно движется спутник 10. Это является противоположностью наземным мобильным ячеистым системам, в которых обычно ячейки рассматриваются как фиксированные, а мобильный абонент перемещается по ячейкам. По мере продвижения ячейки к абоненту ячеичный коммутатор должен "передавать" связь абонента к смежной ячейке. Если спутники все перемещаются в одном и том же направлении и имеют по существу параллельные низкие полярные орбиты, смежная диаграмма ячейки и/или смежная ячейка может быть предсказана ячеичным коммутатором с высокой степенью точности. Для проведения переключения может использоваться информация об амплитуде или информация двоичной погрешности. В каждой диаграмме спутника ячеистой системы может использоваться множество сгустков из четырех ячеек. Один сгусток содержит ячейки 24, 26, 20 и 28, где ячейки работают на частотах, имеющих величины соответственно обозначенные A, B, C и D. Девять таких узлов показаны на фиг.1 и они образуют диаграмму 18. При повторном использовании частот A, B, C и D происходит деление величины спектра, который бы потребовался для связи с диаграммой 18, примерно на девять. Один из приемопередатчиков спутника 10, например, может использовать частоту связи Земля-спутник 1,5 гигагерц (ГГц) - 1,52 ГГц, а частоту связи спутник -Земля от 1,6 до 1,62 ГГц. Диаграмма 18 каждой ячейки может быть установлена в 250 морских миль в диаметре и для обработки полной диаграммы ячейки ячеистой спутниковой системы может понадобиться 610 с. Спектр частоты ячейки может быть выбран, как предлагается стандартами, опубликованными Ассоциацией электронной промышленности (EIA) для кодирования наземной ячеистой системы. В каналах связи абонента используется цифровая техника для передачи речевой и/или фактической информации от одного абонента к другому. В соответствии с описанным примером реализации станция управления 22, находящаяся в ячейке 24 частоты "А", передает информацию TTC на спутник 10 с использованием одного из каналов связи потребителя на ячейках в режиме речь/ данные вместо отдельного приемопередатчика TTC. Каждый из этих ячеистых каналов абонента представляет собой одну линию речь/ данные, обозначенную трассовым или телефонным номером. Обычно эти каналы начинаются и заканчиваются на поверхности Земли. Однако при использовании в качестве TTC окончанием линии канала и приемником "вызова" может быть спутник 10. Каждый спутник в узле получает единственный номер (то есть телефонный номер). Наземная станция 22 может связаться непосредственно с любым спутником, в зоне видимости которого он находится, путем генерирования адреса спутника. Аналогично наземная станция 22 также имеет единственный адрес. Если спутник 10 находится в движении в направлении стрелки 30 так, что ячейка 26 будет двигаться следующей над оператором 22, ячейка "A" 24 перейдет на ячейку 26 "B", которая позднее "перейдет", например, на ячейку "D" 32. Если ячейка 26 становится нерабочей, связь TTC будет только временно прервана, а не полностью нарушена, как бывает в случае известных систем, имеющих только по одному ответчику TTC на спутник. Следовательно, ячеечная система, показанная на фиг. 1, обеспечивает высокую степень надежности для обмена TTC, ввиду избыточности приемопередатчиков, обеспечивающих каждую ячейку. Как показано на фиг. 2, наземная станция 50 может подавать информацию TTC на спутник 52, находящийся в прямой видимости, по каналу 51 абонента. Спутник 52 принимает и посылает TTC от станции 50 наряду с мультиплексными каналами данных абонента, например, от абонента 53 по каналу 55. Ячеечный коммутатор распознает идентификатор или адрес спутника для спутника 52 таким же путем, каким сеть распознает наземные обозначения. Также если необходимо пропустить данные TTC на другой спутник 54, который не находится в прямой видимости станции 50, тогда эти данные могут быть посланы на спутник 52, а затем переданы по линии 56 на спутник 54. Аналогичные меры могут быть предприняты для всех дополнений сети и данных TTC на каждый спутник и от каждого спутника сети. Если необходимо сообщить о состоянии спутника 58 и данных приемника положения на станцию 50 наземного управления, он вырабатывает сигнал вызова и пропускает данные по линии 60, используя единственный номер для спутника 52. Затем информация TTC передается на Землю по каналу 51 на станцию управления 50. Обычно спутники типа 52, 54 и 58 опрашиваются по данным TTC, а серьезные события, влияющие на состояние любого данного спутника, вырабатываются и посылаются этим спутником через другие спутники, если это необходимо, на станцию управления. Таким образом, система позволяет осуществлять постоянную передачу данных TTC и от станции управления 50, даже если станция управления 50 не находится на линии наблюдения находящегося на связи спутника. На фиг.3 показаны блок-схемы наземной станции 100 и спутника 102. Наземная станция 100 может быть либо фиксированной постоянной станцией или мобильным абонентом, использующим компьютер с модемом для связи через стандартный телефон. Средство кодирования 103 обеспечивает "адресный" сигнал на передатчик 105. По линии 104 приемопередатчика передаются сигналы от передатчика 105 станции управления 100 на антенную подсистему 106 спутника 102. Приемник 108 спутника 102 соединен между антенной подсистемой 106 и системой 110 демодулятора/демультиплексора. Маршрутизатор 112 соединен между выходом системы 100 и входом мультиплексора / модулятора 114. Маршрутизатор 112 также обрабатывает адреса всех входящих данных и посылает соответственно адресованные данные на другие спутники, например, через мультиплексор/ модулятор 114, который также соединен с двусторонней приемопередающей подсистемой 116. Маршрутизатор 112 кодирует соответствующие адреса в сигналы, имеющие назначения, отличные от спутника 102. Маршрутизатор 112 отсортировывает любые сообщения для спутника 102, которые обозначены своим адресным кодом. Приемник положения 118 глобального установочного спутника (GPS) соединен с маршрутизатором 112 через проводник 120 и со спутниковой подсистемой 122 через проводник 124. Маршрутизатор 112 соединен со спутниковой подсистемой управления 122 через проводник 126 и с сенсорной подсистемой 128 - через проводник 130. Спутниковая подсистема управления 122 расшифровывает командные сообщения от маршрутизатора 112 для спутника 102 и вызывает осуществление определенных действий. Сенсорная подсистема 128 подает телеметрические данные на маршрутизатор 112. Приемник положения 118 глобальной установочной системы (GPS) принимает информацию от существующих спутников (GPS) известным способом и определяет точное местоположение спутника 102 в космосе. Орбитальные космические вектора получают на основе этой информации. Приемник положения 118 также определяет положение спутника 102 относительно созвездия GPS. Эту информацию сравнивают с информацией о заданном положении, записанной в маршрутизаторе 112. Сигналы погрешности вырабатываются приемником положения 118 GPS и посылаются на спутниковую подсистему управления 122 спутником для автоматической коррекции курса. Сигнал ошибки используется в спутниковой подсистеме управления 122 для контроля небольших ракет, играющих роль "держателя курса". Следовательно, спутник 102 использует информацию GPS для управления его собственным курсом, а не только для получения курсоконтроля от станции 100. Этот бортовой контроль позволяет устанавливать положение спутника 102 и контролировать его в пределах нескольких метров. Приемник положения GPS 118 также создает пространственные вектора на маршрутизатор 112, а сенсорная подсистема 128 обеспечивает подачу другой телеметрической информации по проводнику 130 на маршрутизатор 112, который составляет сообщения, которые подаются по проводнику 132 на мультиплексор/ модулятор 114 и по проводнику 134, передатчик 136 и проводнику 138 - для передачи антенной подсистемой 106. Затем эти сообщения передаются по линии 140 на приемник 108 наземной станции 100. Или же, когда необходимо связаться с другой станцией управления по другой спутниковой линии, сообщения, составленные маршрутизатором 112, посылаются через приемопередающую двустороннюю подсистему 116. Таким образом, каждый спутник может "знать" свое положение, а также положение своих соседей по созвездию. Наземный оператор также имеет постоянный доступ к этой текущей информации. Следовательно, в отличие от известных систем, которые не содержат приемники положения GPS, следящая или текущая информация для спутника 102 вычисляется на борту спутника 102. Спутнику 102 не надо иметь постоянные исправления траектории от наземной станции 100. Однако информация контроля траектории обеспечивается от наземной станции 100, когда в этом есть необходимость. Сигнал GPS является цифровым сигналом, который совместим с цифровыми ячеечными линиями связи или каналами, используемыми для наземной связи абонент-абонент. Бортовой захват формата цифрового сигнала GPS позволяет вставлять следующую информацию в каналы, нормально используемые для передачи речевой и/или фактической информации. Система имеет много преимуществ по сравнению с известными системами, в которых используется отдельный ответчик TTC в каждом спутнике. А именно, если ответчик в известной системе выходит из строя, спутник становится бесполезным. В ином случае, поскольку наземная станция 22 на фиг.1, например, может использовать любой из приемопередатчиков, связанных со спутником 10, даже если один из этих приемопередатчиков и выйдет из строя, остаются еще 35 других, с помощью которых станция 22 может поддерживать связь TTC со спутником 10. Кроме того, как показано на фиг. 2, даже если все связи спутник-Земля конкретного спутника, например, 58 выйдут из строя, наземная станция 50 сможет связаться с тем спутником с помощью двусторонней связи, например, 60 через другой спутник, например 52. Таким образом, система по изобретению обеспечивает надежную связь TTC.

Также система TTC может находиться в постоянной связи с конкретным спутником посредством двусторонней связи, а не ожидая линию прямой видимости, как в некоторых известных системах TTC. Для известных систем TTC требуется, чтобы наземная станция была фиксирована, тогда как для данной системы можно использовать мобильные наземные управляющие станции. Мобильная наземная станция имеет единственный адрес или телефонный номер, присвоенный ей, и за положением наземной станции можно следить так же, как следят за абонентами со спутников ячеечных спутниковых созвездий. В данной следящей системе используется приемник GPS на борту спутника для обеспечения бортового слежения и следящего управления, а не только наземного управления слежением. Эта цифровая информация слежения сразу вводится в цифровой ячеечный канал абонента.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Система управления для спутниковой системы связи, имеющей по меньшей мере один спутник с приемниками и передатчиками, создающими множество абонентских каналов связи для установления связи между множеством абонентов, содержащая спутниковую подсистему управления на борту спутника для управления функциями спутника, наземную станцию управления, первую линию связи, соединенную со спутниковой подсистемой управления и наземной станцией управления для соединения наземной станции управления со спутниковой подсистемой управления, отличающаяся тем, что обеспечивающее связь соединение устанавливается посредством одного из абонентских каналов связи, при этом указанный один из абонентских каналов связи используется для передачи команд в спутниковую подсистему управления, объединенную с множеством абонентских каналов связи, причем спутник включает в себя множество передатчиков и приемников для проецирования множества смежных ячеек на Землю, а спутниковая подсистема управления чувствительна к командам наземной станции управления для обеспечения возможности управления этими командами выбранной функцией спутника. 2. Система управления по п.1, отличающаяся тем, что первая линия связи содержит передатчик наземной станции управления и средство кодирования, соединенное с передатчиком наземной станции управления для кодирования заданного спутникового адресного кода в командах для спутника, причем спутник содержит демодулятор/демультиплексор, соединенный с приемником спутника, и маршрутизатор для распознавания и ответа на заданный спутниковый адресный код для выдачи команд и соединенный со спутниковой подсистемой управления и демодулятором/демультиплексором для соединения спутниковой подсистемы управления с демодулятором/демультиплексором с возможностью приема спутниковой подсистемой управления команд от наземной станции управления. 3. Система управления по п.1, отличающаяся тем, что спутник содержит сенсорную подсистему для измерения заданного режима на спутнике и выдачи телеметрических данных, вторую линию связи для подсоединения сенсорной подсистемы к указанному одному из абонентских каналов связи для передачи телеметрических данных со спутника на наземную станцию управления. 4. Система управления по п.3, отличающаяся тем, что вторая линия связи содержит маршрутизатор, соединенный с сенсорной подсистемой, причем маршрутизатор кодирует телеметрические данные адресным кодом, соответствующим наземной станции управления, и выдает кодированные телеметрические данные посредством передатчика спутника через указанный один из абонентских каналов связи. 5. Система управления по п.1, отличающаяся тем, что спутник содержит приемник положения для контроля и выдачи текущих данных спутника, вторую линию связи для выдачи текущих данных спутника через указанный один из абонентских каналов связи со спутника на наземную станцию управления. 6. Система управления по п.5, отличающаяся тем, что вторая линия связи содержит маршрутизатор, соединенный с приемником положения, причем маршрутизатор кодирует указанные телеметрические данные адресным кодом, соответствующим наземной станции управления, и соединенный с передатчиком, входящим в состав спутника, причем передатчик обеспечивает передачу текущих данных на наземную станцию управления через указанный один из абонентских каналов связи. 7. Система управления по п.1, отличающаяся тем, что наземная станция управления является мобильной. 8. Система управления по п.1, отличающаяся тем, что спутниковая система связи содержит множество спутников, причем каждый спутник содержит приемопередающую подсистему, в которой спутники соединены двусторонними связями посредством приемопередающих подсистем, так что они устанавливают абонентские каналы связи друг с другом и разрешают наземной станции управления посылать команды по указанному одному из абонентских каналов связи на один из множества спутников через другой из множества спутников, имеющий с ним двустороннюю связь. 9. Система управления по п.1, отличающаяся тем, что спутниковая система связи дополнительно содержит ячеечный коммутатор, соединенный с первой линией связи для направления множества абонентских сообщений по указанным абонентским каналам связи. 10. Система управления по п.1, отличающаяся тем, что спутник дополнительно содержит множество передатчиков и приемников для проецирования множества смежных ячеек, которые перемещаются в связи со спутником относительно поверхности Земли, причем каждый из передатчиков и приемников имеет возможность передавать и принимать на одну из ячеек по одному из абонентских каналов связи, и мультиплексор/модулятор для переключения связи с наземной станцией управления между передатчиками и приемниками, связанными с каждой из ячеек с обеспечением непрерывной выдачи команд на спутник по меньшей мере в течение заданного периода времени при нахождении спутника в прямой видимости наземной станции управления. 11. Телеметрическая, следящая и управляющая система для спутниковых ячеистых систем связи, имеющая множество спутников, у каждого из которых имеются передатчики и приемники, создающие множество абонентских каналов связи для установления связи между множеством абонентов, содержащая на каждом спутнике спутниковую подсистему управления для управления функциями этого спутника, приемник положения для определения положения этого спутника, наземную станцию управления и первую линию связи, соединенную с спутниковой подсистемой управления, приемником положения и наземной станцией управления, отличающаяся тем, что обеспечивающее связь соединение устанавливается посредством одного из абонентских каналов связи, при этом наземная станция управления использует указанный один из абонентских каналов связи для передачи команд в спутниковую подсистему управления и приема данных из приемника положения. 12. Телеметрическая, следящая и управляющая система по п.11, дополнительно отличающаяся тем, что содержит маршрутизатор, соединенный с приемником положения и спутниковой подсистемой управления для соединения приемника положения со спутниковой подсистемой управления, причем приемник положения выполнен с возможностью выдачи сигналов управления курсом в спутниковую подсистему управления для управления курсом спутника, а спутниковая подсистема управления чувствительна к командам от наземной станции управления для обеспечения возможности управления этими командами выбранной функцией спутника. 13. Телеметрическая, следящая и управляющая система по п.11, отличающаяся тем, что первая линия связи содержит передатчик наземной станции управления, средство кодирования, соединенное с передатчиком наземной станции управления, для кодирования заданного адресного кода в командах для спутника, причем каждый спутник содержит демодулятор/демультиплексор, соединенный с приемником спутника, и маршрутизатор для распознавания и ответа на заданный адресный код для выдачи команд, соединенный и со спутниковой подсистемой управления и демодулятором/демультиплексором для соединения спутниковой подсистемы управления с приемником спутника с возможностью принимать спутниковой подсистемой управления команд от наземной станции управления. 14. Телеметрическая, следящая и управляющая система по п.11, отличающаяся тем, что содержит на каждом спутнике сенсорную подсистему для измерения заданного режима на спутнике и выдачи телеметрических данных, причем сенсорная подсистема соединена с маршрутизатором, соединенным с передатчиком и первой линией связи для соединения сенсорной подсистемы с наземной станцией управления через указанный один из абонентских каналов связи с возможностью посылки телеметрических данных со спутника на наземную станцию управления. 15. Телеметрическая, следящая и управляющая система по п.14, отличающаяся тем, что содержит маршрутизатор, соединенный с сенсорнной подсистемой для кодирования указанных телеметрических данных адресным кодом, соответствующим наземной станции управления. 16. Телеметрическая, следящая и управляющая система по п.11, отличающаяся тем, что наземная станция управления является мобильной. 17. Телеметрическая, следящая и управляющая система по п.11, отличающаяся тем, что спутниковая система связи содержит множество спутников, каждый из которых содержит приемопередающую подсистему, причем спутники соединены двусторонними связями посредством приемопередающих подсистем, так что они устанавливают абонентские каналы связи друг с другом и разрешают наземной станции управления посылать команды по указанному одному из абонентских каналов связи на один из множества спутников через другой из множества спутников, имеющих с ним двустороннюю связь. 18. Телеметрическая, следящая и управляющая система по п.11, отличающаяся тем, что спутниковая система связи дополнительно содержит ячеечный коммутатор, соединенный с первой линией связи для направления множества абонентских сообщений по указанным абонентским каналам связи. 19. Телеметрическая, следящая и управляющая система по п.11, отличающаяся тем, что спутниковая система связи дополнительно содержит множество передатчиков и приемников для проецирования множества смежных ячеек, которые перемещаются в связи со спутником относительно поверхности Земли, причем каждый из передатчиков и приемников выполнен с возможностью передачи и приема на одну из ячеек через один из абонентских каналов связи и мультиплексор/модулятор для переключения связи с наземной станцией управления между передатчиком и приемником, связанными с каждой из ячеек с возможностью непрерывной выдачи команд на спутник по меньшей мере в течение заданного периода времени, когда спутник находится в прямой видимости наземной станции управления.

Спутники - уникальная особенность «Джаггернаута» , не имеющая аналогов в других браузерных играх. Это напарники, которых игроки могут призвать во время боя, получая неоспоримое преимущество над противником.

Меню спутников открывается при нажатии на иконку с изображением спутника, которая находится справа от верхней игровой панели :

Там же отображаются все доступные игроку спутники. Каждый игрок может одновременно призвать до пяти спутников . Любого из них при желании можно переименовать .

Первым спутником станет воинственная амазонка 15-го уровня по имени Ариана . В дальнейшем будут появляться новые спутники различных уровней и силы. Будут отличаться и их способности, а также стоимость призыва в бой. Стоимость вызова спутника зависит от разницы в уровнях между игроком и спутником. При равных уровнях стоимость призыва амазонки - 25 золотых . Если спутник намного меньше игрока по уровню - стоимость его призыва уменьшается, если спутник выше игрока - увеличивается.

Участвуя в боях против монстров , спутник получает опыт , в боях против игроков - опыт и героизм , количество которого зависит от нанесённого спутником урона . Одна из ключевых особенностей спутников в том, что игрок может присвоить себе их героизм и опыт . С помощью ползунков можно настроить, сколько опыта или героизма получит за свои действия спутник и сколько из них перейдёт игроку.

С помощью специальных артефактов можно увеличивать общее количество опыта и героизма , получаемого спутником.

Кроме артефактов спутник может носить ювелирные изделия (две серьги, два кольца, амулет) и специальные доспехи, доступные при достижении спутником 18-го, 23-го, 28-го, 33-го, 38-го и 43-го уровней.

С получением каждого уровня, спутник получает определенное количество очков распределения , которые можно вкладывать в развитие той или иной характеристики спутника . Каждая характеристика имеет свою стоимость повышения. Для повышения Силы на один пункт нужно потратить 4 очка распределения, единица Живучести требует 5 очков, а классовые характеристики - по 6.

Таким образом, каждый сможет сделать из своего спутника подходящего по характеристикам компаньона . Игрок сможет перераспределить характеристики в любой момент, нажав на кнопку «Сбросить». За каждый сброс характеристик взимается плата.

У спутников также существует система званий . Система достижения званий схожа с такой же системой у игроков: при накоплении определенного количества героизма спутник получает определенное звание. Каждое звание даёт спутнику доступ к новым способностям, усиливающим его. Звания доступны для спутника вне зависимости от его уровня . Так, амазонка 15-го уровня может иметь максимально возможное звание.

После достижения определённого звания и связанной с ним способности, спутник будет с определённой вероятностью использовать эту способность в бою. Чем выше звание - тем более значимую пользу приносит способность спутника . При высоких званиях спутник сможет накладывать усиливающие заклинания на участников группы и исцелять их.

Для призыва спутника в бой необходимо нажать на соответствующую кнопку, которая находится над панелью вызова фантомов . При этом спутник зайдет в бой, а по окончании боя с игрока будет снята суммарная стоимость призыва всех спутников, задействованных в этом бою.

У каждого спутника есть энергия . Эта энергия тратится при вызове спутницы в бой. Если энергии на вызов недостаточно, то за вызов спутницы придётся заплатить золотом. Количество энергии или стоимость вызова можно увидеть наведя мышку на иконку спутницы. Имейте ввиду что в ПВП боях и инстансах спутниц можно вызвать исключительно за золото, а в полях битв спутниц использовать нельзя.

В «Джаггернауте» будут появляться всё новые спутницы, каждая из которых будет обладать своей историей, индивидуальным характером и уникальными способностями. Спешите пополнить свою личную армию прекрасными воительницами , которые помогут вам одержать новые победы!

13.07.2018, Пт, 17:50, Мск , Текст: Валерия Шмырова

Российские инженеры и ученые успешно протестировали методику управления орбитальными спутниками через систему спутниковой связи «Глобалстар». Поскольку подключиться к системе можно через интернет, спутниками можно управлять из любой точки земного шара.

Управление спутником по интернету

Холдинг «Российские космические системы» госкорпорации «Роскосмос» разработал методику управления малыми космическими аппаратами через интернет, которую авторы проекта называют «уникальной». Методика тестировалась на спутнике ТНС-0 №2, который сейчас находится на орбите Земли. Напомним, это первый российский наноспутник, запущенный в космос.

На борту ТНС-0 №2 установлен модем системы спутниковой связи «Глобалстар», который обеспечивает передачу данных в обе стороны. Отсылая по «Глобалстар» команды на модем, можно управлять спутником. Поскольку к системе можно подключиться через интернет, то ТНС-0 №2 в результате можно управлять из любой точки планеты, где есть доступ ко всемирной паутине.

Управление осуществляется через программу «Виртуальный ЦУП», загруженную в облако. К программе может подключаться множество пользователей одновременно, что обеспечивает возможность совместного управления спутником. В результате, если у пользователя в какой-либо точке земного шара возникнет необходимость задействовать спутник в научных или технологических экспериментах, ему достаточно иметь выход в интернет, чтобы подключиться к программе. Таким же образом можно получить результаты эксперимента со спутника. При таком подходе затраты будут минимальными, считают авторы проекта.

В общей сложности через модем «Глобалстар» было проведено 3577 сеансов в связи с ТНС-0 №2, совокупная продолжительность которых составила более 136 часов. В качестве резервного канала связи использовалась УКВ-радиостанция, которая также имеется на борту спутника. Эксперимент проводился учеными и инженерами из РКС, Института прикладной математики РАН им. М. В. Келдыша и РКК «Энергия».

Наноспутник ТНС-0 №2 весит всего 4 кг

Также на ТНС-0 №2 была протестирована разработанная в РКС автономная система навигации. Через систему осуществляется высокоточная наводка УКВ-антенн ЦУПа для подключения к спутнику. Благодаря этому авторы эксперимента смогли управлять аппаратом независимо от зарубежных систем типа NORAD, которая чаще всего применяется в работе со спутниками нанокласса.

Достижения ТНС-0 №2

ТНС-0 №2 был запущен с борта МКС 17 августа 2017 г., для чего двум космонавтам пришлось выйти со станции в открытый космос. К настоящему моменту спутник работает на орбите уже в два раза дольше запланированного срока эксплуатации. Бортовые приборы и батареи спутника находится в полном порядке. Ежедневно ученые на Земле получают данные о его работе в ходе не менее чем 10 сеансов связи.

«Все используемые в нем приборы уже прошли летную квалификацию. Благодаря этому мы получили отработанные решения, на основе которых мы вместе с партнерами из РКК «Энергия» и Института прикладной математики им. Келдыша будем работать над развитием универсальной отечественной наноспутниковой платформы», - сообщил главный конструктор ТНС-0 №2 Олег Панцырный .

Спутник был создан согласно концепции «спутник-прибор», то есть строился, тестировался и был запущен в работу как готовый аппарат. В результате он получился небольшим по размерам, около 4 кг, и дешевле, чем полноразмерные спутники, а разработка была завершена быстрее, сообщают авторы проекта. На спутник можно устанавливать полезную нагрузку до 6 кг, а также модули с двигателями, солнечными батареями или приемно-передающими устройствами, расширяя таким образом его функциональность.

При текущем состоянии атмосферы эксперты-баллистики обещают, что спутник прослужит до 2021 г., после чего сгорит в плотных слоях атмосферы. Его ПО планируют модифицировать таким образом, чтобы автономный полет мог продолжаться до 30 суток. В ходе эксплуатации спутника ученые рассчитывают определить экстремальное сроки работы техники в космосе, что в перспективе позволит дольше использовать наноспутники на орбите.

Окно запуска - это такой период времени, когда наиболее просто разместить спутник на требуемую орбиту для того, чтобы он начал выполнять свои функции.

Например, очень важным фактором является выбор такого окна запуска, когда можно легко вернуть космонавтов обратно, если что-то пойдет не так. Космонавты должны иметь возможность достигнуть безопасной точки приземления, в которой кроме того, будет соответствующий персонал (никто же не хочет приземляться в тайге или Тихом океане). Для других типов запусков, включая межпланетные исследования, окно запуска должно позволить выбрать наиболее эффективный курс достижения очень далеких объектов. Если в расчетное окно запуска будет плохая погода или произойдут какие-то технические неполадки, то запуск стоит перенести в другое благоприятное окно запуска. Если спутник будет запущен пусть даже и в хорошую погоду, но в неблагоприятное окно запуска, то он может быстро закончить свою жизнь либо на неправильной орбите, либо в Тихом океане. В любом случае он не сможет выполнять требуемые функции. Время - наше все!

Что есть внутри типичного спутника?

Спутники бывают разные и имеют разное предназначение. Например:
  • Погодные спутники помогают синоптикам предсказывать погоду или просто видеть то, что происходит в данный момент. Вот типичные погодные спутники: EUMETSAT (Meteosat), США (GOES), Япония (MTSAT), Китай (Fengyun-2), Россия (GOMS) и Индия (KALPANA). Такие спутники, как правило, содержат фотокамеры, которые шлют на Землю снимки погоды. Как правило, такие спутники располагаются либо на геостационарной орбите, либо на полярных орбитах.
  • Спутники связи позволяют передавать через себя телефонные звонки и информационные соединения. Типичными коммуникационными спутниками являются Telstar и Intelsat. Самой главной частью спутника связи является транспондер - специальный радиопередатчик, который принимает данные на одной частоте, усиливает их и передает обратно на Землю на другой частоте. Спутник, как правило, содержит на борту сотни или даже тысячи транспондеров. Коммуникационные спутники чаще всего являются геосинхронными.
  • Телерадиовещательные спутники передают телевизионный (или радио) сигнал из одной точки в другую (так же как спутники связи).
  • Научно-исследовательские спутники выполняют различные научные функции. Самым известным является, пожалуй, космический телескоп Хаббл, однако, на орбите существует и множество других, которые наблюдает за всем чем только можно от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают навигации кораблей и самолетов. Самые известные из навигационных спутников - GPS и наш отечественный ГЛОНАСС.
  • Спасательные спутники реагируют на сигналы бедствия.
  • Спутники исследования Земли используются для исследования изменений на планете от температуры до предсказания таяниях полярных льдов. Самые известные из них спутники серии LANDSAT.
  • Военные спутники используются в военных целях и их назначение как правило засекречено. С появлением военных спутников стало возможным вести разведку прямо из космоса. Кроме того, военные спутники могут использоваться для передачи зашифрованных сообщений, ядерного мониторинга, изучения передвижений противника, раннего предупреждения о запуске ракет, прослушивания наземных линий связи, построение карт радаров, фотографирование (в том числе с использованием специальных телескопов для получения очень подробных картин местности).
Несмотря на существенные различия между всеми этими типами спутников, они имеют несколько общих вещей. Например:
  • Все они имеют металлический или композитный каркас и корпус. Корпус спутника содержи все необходимое для функционирования на орбите, в том числе до выживания.
  • Все спутники имеют источник энергии (как правило - солнечные батареи) и аккумуляторы для запасов энергии. Набор солнечных батарей обеспечивают электроэнергию для подзарядки батарей. Некоторые новые спутники также содержат и топливные ячейки. Электроснабжение на большинстве спутников очень ценный и ограниченный ресурс. На некоторых космических зондах применяется ядерная энергия. Энергосистема спутников постоянно наблюдается, и собранные данные по энергомониторингу и мониторингу других систем посылаются на Землю в форме телеметрических сигналов.
  • Все спутники содержат бортовой компьютер для управления и мониторинга различных систем.
  • Все они имеют радиопередатчик и антенну. В самом минимуме все спутники имеют приемопередатчик, с помощью которого наземная команда управления может запращивать информацию со спутника и наблюдать его состояние. Многими спутниками можно управлять с Земли для выполнения различных задач от смены орбиты до перепрошивки бортового компьютера.
  • Все они содержат систему управления положением. Такая система предназначена для сохранения ориентации спутника в правильном направлении.
Например, телескоп Хаббл имеет очень сложную систему управления, которая позволяет направлять телескоп в одну точку в космосе в течении часов или даже дней (несмотря на то, что телескоп движется по орбите со скоростью 27 359 км/ч). Система включает гироскопы, акселлерометры, системы стабилизации, ускорите или набор датчиков, которые наблюдают за некоторыми звездами для определения местоположения.

Какие типы орбит спутников бывают?

Существуют три основные типы орбиты, и зависят от они от положения спутника относительно поверхности Земли:
  • Геостационарная орбита (еще ее называют геосинхронной или просто синхронной) - это такая орбита, двигаясь по которой спутник всегда находится над одной и той же точкой на поверхности Земли. Большинство геостационарных спутников находится над экватором на высоте около 36000 км, что составляет примерно десятую часть от расстояния до Луны. «Место парковки спутников» над экватором становится перегруженным несколькими сотнями телевизионных спутников, погодных и спутников связи! Эта перегруженность означает, что каждый спутник должен точно управляться для предотвращения перекрытия его сигнала с сигналами соседних спутников. Телевизионные, коммуникационные и погодные спутники - всем нужна геостационарная орбита. Поэтому все спутниковые тарелки на поверхности Земли смотрят всегда в одну сторону, в нашем случае (северное полушарие) на юг.
  • Космические запуски обычно используют более низкую орбиту, что приводит к тому, что они пролетают над различными точками в различные моменты времени. В среднем высота асинхронной орбиты составляет примерно 644 километра.
  • На полярной орбите спутник обычно находится на малой высоте и проходит через полюса планеты при каждом обороте. Полярная орбита остается неизменной в космосе при вращении Земли по орбите. В результате большая часть Земли проходит под спутником, находящимся на полярной орбите. Из-за того что полярная орбита дает наибольшее покрытие поверхности Земли, ее часто используют для спутников, которые производят картографирование (например, для Google Maps).
Как рассчитывают орбиты спутников?

Для расчета орбиту спутников используется специальное программное обеспечение для компьютеров. Эти программы используют Кеплеровские данные для расчета орбиты и момента, когда спутник будет «над головой». Кеплеровские данные доступны в Интернете и для любительских радиоспутников.

Спутники используют ряд чувствительных к свету датчиков для определения собственного местоположения. После этого спутник передает полученную позицию на наземную станцию управления.

Высоты спутников

Остров Манхэттен, изображение с GoogleMaps

Если смотреть с Земли, спутники летают на разных высотах. Лучше всего думать о высотах спутников в терминах «как близко» или «как далеко» они от нас. Если рассматривать грубо, от самых близких до самых далеких, то получим следующие типы:

От 100 до 2000 километров - Асинхронные орбиты

Наблюдательные спутники обычно располагаются на высотах от 480 до 970 километров, и используются для таких задач как фотографирование. Наблюдательные спутники типа Landsat 7 выполняют следующие задачи:

  • Картографирование
  • Наблюдение за движением льда и песка
  • Определение местоположения климатических ситуаций (как например, исчезновение тропических лесов)
  • Определение местоположения полезных ископаемых
  • Поиск проблем с урожаем на полях
Поисково-спасательные спутники работают как передающие станции для ретрансляции сигналов бедствия с упавших самолетов или терпящих бедствия кораблей.

Космические аппараты (например, шаттлы) являются управляемыми спутниками, как правило, с ограниченным временем полета и рядом орбит. Космические запуски с участием людей как правило применяются при ремонте уже существующих спутников или при строительстве космической станции.

От 4 800 до 9 700 километров - Асинхронные орбиты

Научные спутники иногда располагаются на высотах от 4 800 до 9 700 километров. Они отправляют полученные ими научные данные на Землю с помощью радио-телеметрических сигналов. Научные спутники применяются для:

  • Изучения растений и животных
  • Исследование Земли, как например, наблюдение за вулканами
  • Отслеживание дикой природы
  • Астрономических исследований, включая инфракрасные астрономические спутники
  • Исследований в области физики, как например, исследования NASA в области микрогравитации или исследования солнечной физики
От 9 700 до 19 300 километров - Асинхронные орбиты

Для навигации, американское оборонное ведомство и российское правительство создали навигационные системы, GPS и ГЛОНАСС соответственно. Навигационные спутники используют высоты от 9 700 до 19 300 километров, и применяются для определения точного местоположения приемника. Приемник может располагаться:

  • В корабле на море
  • В другом космическом аппарате
  • В самолете
  • В автомобиле
  • У вас в кармане
Так как цены на потребительские навигационные приемники имеют тендецию к снижению, обычные бумажные карты столкнулись с очень опасным противником. Теперь вам будет сложнее потеряться в городе и не найти нужную точку.

Интересные факты о GPS:

  • Американские войска во время операции «Буря в пустыне» использовали более 9 000 GPS приемников.
  • Национальное управление океанических и атмосферных исследований (NOAA) США использовало GPS для измерения точной высоты монумента Вашингтона.
35 764 километров - Геостационарные орбиты

Погодные прогнозы обычно демонстрируют нам изображения со спутников, которые как правило находятся на геостационарной орбите на высоте 35 764 километра над экватором. Вы можете получить напрямую некоторые такие изображения с помощью специальных приемников и компьютерного программного обеспечения. Многие страны используют погодные спутники для предсказания погоды и наблюдения за штормами.

Данные, телевизионные сигнал, изображения и некоторые телефонные звонки аккуратно принимаются и ретранслируются коммуникационными спутниками. Обычные телефонные звонки могут иметь от 550 до 650 миллисекунд задержки на прохождение сигнала туда и обратно, что приводит к неудовольствию пользователя. Задержка возникает из-за того, что сигнал должен дойти вверх до спутника и затем вернуться на Землю. Поэтому из-за такой задержки, многие пользователи предпочитают пользоваться спутниковой связью только в том случае, если нет других вариантов. Однако, VOIP (голос через интернет) технологии встречаются сейчас с похожими проблемами, только в их случае они возникают из-за цифровой компрессии и ограничений пропускной способности, нежели из-за растояния.

Коммуникационные спутники являются очень важными ретрансляционными станциями в космосе. Спутниковые тарелки становятся меньше, потому что спутниковые передатчики становятся более мощными и направленными. С помощью таких спутников передаются:

  • Новостные ленты агентств
  • Биржевая, бизнес и другая финансовая информация
  • Международные радиостанции переходят с коротковолнового (или дополняют его) спутниковым вещанием с использованием микроволнового восходящего сигнала
  • Глобальное телевидение, такое как CNN и BBC
  • Цифровое радио

Сколько стоят спутники?

Запуск спутников не всегда проходит удачно. Вспомните провал запуска трех спутников ГЛОНАСС или например ФОБОС-ГРУНТ. На самом деле спутники стоят достаточно дорого. Стоимость тех упавших спутников ГЛОНАСС составляла несколько миллиаров рублей.

Другой важный фактор в стоимости спутников - это стоимость запуска. Стоимость запуска спутника на орбиту может варьироваться между 1.5 и 13 миллиардов рублей. Запуск американских шаттлов может достигать до 16 миллиардов рублей (полмиллиарда долларов). Построить спуник, вывести его на орбиту и затем управлять им - это очень дорогое удовольствие!

Продолжение следует…

Рассказать друзьям