Сварочный инвертор — асимметричный (косой мост) с микроконтроллерным управлением. Принцип построения и работа инверторных сварочных аппаратов Сварочный инвертор липина косой мост

💖 Нравится? Поделись с друзьями ссылкой

Трансформатор является необходимым элементом любого сварочного источника. Он понижает напряжение сети до уровня напряжения дуги, а также осуществляет гальваническую развязку сети и сварочной цепи. Известно, что размеры трансформатора определяются его рабочей частотой, а также качеством магнитного материала сердечника.

Примечание.

При понижении частоты габариты трансформатора возрастают, а при повышении – уменьшаются.

Трансформаторы классических источников работают на относительно низкой частоте сети. Поэтому вес и габариты этих источников в основном определялись массой и объемом сварочного трансформатора.

В последнее время были разработаны различные высококачественные магнитные материалы, позволяющие несколько улучшить массогабаритные параметры трансформаторов и сварочных источников. Однако существенного улучшение этих параметров можно добиться только за счет увеличения рабочей частоты трансформаторов. Так как частота сетевого напряжения является стандартом и не может быть изменена, то повысить рабочую частоту трансформатора можно, используя специальный электронный преобразователь.

Блок-схема инверторного сварочного источника

Упрощенная блок-схема инверторного сварочного источника (ИСИ) изображена на рис. 1 . Рассмотрим схему. Сетевое напряжение выпрямляется и сглаживается, а затем подается на электронный преобразователь. Он преобразует постоянное напряжение в переменное высокой частоты. Переменное напряжение высокой частоты трансформируется при помощи малогабаритного высокочастотного трансформатора, затем выпрямляется и подается в сварочную цепь.

Типы трансформаторов

Работа электронного преобразователя тесно связана с циклами перемагничивания трансформатора. Так как ферромагнитный материал сердечника трансформатора обладает нелинейностью и насыщается, то индукция в сердечнике трансформатора может расти лишь до какого-то максимального значения Вm.

После достижения этого значения сердечник необходимо размагнитить до нуля или перемагнитить в обратном направлении до значения – Вm. Энергия может передаваться через трансформатор:

  • в цикле намагничивания;
  • в цикле перемагничивания;
  • в обоих циклах.

Определение.

Преобразователи, обеспечивающие передачу энергии в одном цикле перемагничивания трансформатора, называются однотактными .

Соответственно, преобразователи, обеспечивающие передачу энергии в обоих циклах перемагничивания трансформатора, называются двухтактными .

Однотактный прямоходовый преобразователь

Преимущества однотактных преобразователей. Однотактные преобразователи получили наибольшее распространение в дешевых и маломощных инверторных сварочных источниках, рассчитанных на работу от однофазной сети. В условиях резко переменной нагрузки, каковой является сварочная дуга, однотактные преобразователи выгодно отличаются от различных двухтактных преобразователей:

  • они не требуют симметрирования;
  • они не подвержены такой болезни, как сквозные токи.

Следовательно, для управления этим преобразователем, требуется более простая схема управления, по сравнению с той, которая потребуется для двухтактного преобразователя.

Классификация однотактных преобразователей. По способу передачи энергии в нагрузку, однотактные преобразователи делятся на две группы: прямоходовые и обратноходовые (рис. 2 ). В прямоходовых преобразователях энергия в нагрузку передается в момент замкнутого состояния, а в обратноходовых преобразователях - в момент разомкнутого состояния ключевого транзистора VT. При этом в обратноходовом преобразователе, энергия запасается в индуктивности трансформатора Т во время замкнутого состояния ключа и ток ключа имеет форму треугольника с нарастающим фронтом и крутым срезом.

Примечание.

При выборе типа преобразователя ИСИ между прямоходовым и обратноходовым, предпочтение отдается прямоходовому однотактному преобразователю.

Ведь не смотря на его большую сложность, прямоходовой преобразователь, в отличие от обратноходового, имеет большую удельную мощность . Это объясняется тем, что в обратноходовом преобразователе через ключевой транзистор протекает ток треугольной формы, а в прямоходовом - прямоугольной. Следовательно, при одном и том же максимальном токе ключа, среднее значение тока у прямоходового преобразователя получается в два раза выше.

Основными достоинствами обратноходового преобразователя является:

  • отсутствие дросселя в выпрямителе;
  • возможность групповой стабилизации нескольких напряжений.

Эти достоинства обеспечивают преимущество обратноходовым преобразователям в различных маломощных применениях, каковыми являются источники питания различной бытовой теле- и радиоаппаратуры; а также служебные источники питания цепей управления самих сварочных источников.

Трансформатор однотранзисторного прямоходового преобразователя (ОПП) , изображенного на рис. 2, б , имеет специальную размагничивающую обмотку III. Эта обмотка служит для размагничивания сердечника трансформатора Т, который намагничивается во время замкнутого состояния транзистора VT.

В это время напряжение на обмотке III прикладывается к диоду VD3 в запирающей полярности. Благодаря этому размагничивающая обмотка не оказывает никакого влияния на процесс намагничивания.

После закрытия транзистора VT :

  • напряжение на обмотке III меняет свою полярность;
  • диод VD3 отпирается;
  • энергия, накопленная в трансформаторе Т, возвращается в первичный источник питания Uп.

Примечание.

Однако на практике, из-за недостаточной связи между обмотками трансформатора, часть энергии намагничивания не возвращается в первичный источник. Эта энергия обычно рассеивается в транзисторе VT и демпфирующих цепочках (на рис. 2 не показаны), ухудшая общую эффективность и надежность преобразователя.

Косой мост. Указанный недостаток отсутствует в двухтранзисторном прямоходовом преобразователе (ДПП) , который зачастую называют «косой мост» (рис. 3, а ). В этом преобразователе (благодаря введению дополнительного транзистора и диода) в качестве размагничивающей обмотки используется первичная обмотка трансформатора. Так как эта обмотка сама с собою полностью связана, то проблемы не полного возврата энергии намагничивания полностью исключаются.

Рассмотрим подробнее процессы, происходящие в момент перемагничивания сердечника трансформатора.

Общей особенностью всех однотактных преобразователей является то, что их трансформаторы работают в условиях с односторонним намагничивантем.

Магнитная индукция В (в трансформаторе с односторонним намагничиванием) может изменяется только в пределах от максимальной Вm до остаточной Вr, описывая частную петлю гистерезиса.

Когда транзисторы VT1, VT2 преобразователя открыты, энергия источника питания Uп через трансформатор Т передается в нагрузку. При этом сердечник трансформатора намагничивается в прямом направлении (участок а-b на рис. 3 , б).

Когда транзисторы VT1, VT2 заперты, ток в нагрузке поддерживается за счет энергии запасенной в дросселе L. При этом ток замыкается через диод VD0. В этот момент под действием ЭДС обмотки І, открываются диоды VD1, VD2, и через них протекает ток размагничивания сердечника трансформатора в обратном направлении (участок b-а на рис. 3, б ).

Изменение индукции ∆В в сердечнике происходит практически от Вm до Вr и значительно меньше значения ∆В= 2·Вm, возможного для двухтактного преобразователя. Некоторый прирост ∆В можно получить с помощью введения немагнитного зазора в сердечник. Если сердечник имеет немагнитный зазор δ, то остаточная индукция становится меньше, чем Вr . В случае наличия немагнитного зазора в сердечнике, новое значение остаточной индукции можно найти в точке пересечения прямой, проведенной из начала координат под углом Ѳ, к кривой перемагничивания (точка В1 на рис. 3, б ):

tgѲ= µ 0 ·l c /δ,

где µ 0 магнитная проницаемость;

l c длина средней силовой магнитной линии магнитного сердечника, м;

δ длина немагнитного зазора, м.

Определение.

Магнитная проницаемость – это отношение индукции В к напряженности Н для вакуума (также справедливо и для немагнитного воздушного зазора) и является физической постоянной, численно равной µ 0 =4π·10 -7 Гн/м.

Величину tgѲ можно рассматривать как проводимость немагнитного зазора , приведенную к длине сердечника. Таким образом, введение немагнитного зазора эквивалентно введению отрицательной напряженности магнитного поля:

Н1 = -В1/ tgѲ.

Двухтактный мостовой преобразователь

Достоинства двухтактных преобразователей. Двухтактные преобразователи содержат большее количество элементов и требуют более сложных алгоритмов управления. Однако эти преобразователи обеспечивают меньшую пульсацию входного тока, а также позволяют получить большую выходную мощность и эффективность, при одинаковой мощности дискретных ключевых компонентов.

Схема двухтактного мостового преобразователя. На рис. 4, а изображена схема двухтактного мостового преобразователя. Если сравнивать этот преобразователь с однотактными, то он ближе всего к двухтранзисторному прямоходовому преобразователю (рис. 3 ) . Двухтактный преобразователь легко в него преобразуется, если убрать пару транзисторов и пару диодов, расположенных по диагонали (VT1, VT4, VD2,VD3 или VT2, VT3, VD1, VD4).

Таким образом, двухтактный мостовой преобразователь является комбинацией двух однотактных преобразователей, работающих поочерёдно. При этом энергия в нагрузку передается в течение всего периода работы преобразователя, а индукция в сердечнике трансформатора может меняться от -Вm до +Вm.

Как и в ДПП, диоды VD1-VD4 служат для возврата энергии, накопленной в индуктивности рассеяния Ls трансформатора Т, в первичный источник питания Uп. В качестве этих диодов могут быть использованы внутренние диоды MOSFET.

Принцип действия. Рассмотрим подробнее процессы, происходящие в момент перемагничивания сердечника трансформатора.

Примечание.

Общей особенностью двухтактных преобразователей является то, что их трансформаторы работают в условиях с симметричным перемагничиванием.

Магнитная индукция В, в сердечнике трансформатора с симметричным перемагничиванием, может изменяется в пределах от отрицательно -Вm до положительной +Вm максимальной индукции.

В каждом полупериоде работы ДМП открыты два ключа, расположенные по диагонали. В паузе все транзисторы преобразователя обычно закрыты, хотя существуют режимы управления, когда некоторые транзисторы преобразователя остаются открытыми и в паузе.

Сосредоточимся на режиме управления, согласно которого в паузе все транзисторы ДМП закрыты.

Когда транзисторы VT1, VT4 преобразователя открыты, энергия источника питания Uп через трансформатор Т передается в нагрузку. При этом сердечник трансформатора намагничивается в условном обратном направлении (участок b-а на рис. 4, б ).

В паузе, когда транзисторы VT1, VT4 закрыты, ток в нагрузке поддерживается за счет энергии, запасенной в дросселе L. При этом ток замыкается через диод VD7. В этот момент одна из вторичных обмоток (IIа или IIb) трансформатора Т замкнута накоротко через открытый диод VD7 и один из выпрямительных диодов (VD5 или VD6). В результате этого индукция в сердечнике трансформатора практически не меняется.

После завершения паузы открываются транзисторы VT2, VT3 преобразователя, и энергия источника питания Uп через трансформатор Т передается в нагрузку.

При этом сердечник трансформатора намагничивается в условном прямом направлении (участок а-b на рис. 4 ). В паузе, когда транзисторы VT2, VT3 закрыты, ток в нагрузке поддерживается за счет энергии запасенной в дросселе L. При этом ток замыкается через диод VD7. В этот момент индукция в сердечнике трансформатора практически не меняется и фиксируется на достигнутом положительном уровне.

Примечание.

Из-за фиксации индукций в паузах, сердечник трансформатора Т способен перемагничиваться только в моменты открытого состояния диагонально расположенных транзисторов.

Чтобы в этих условиях избежать одностороннего насыщения необходимо обеспечить равное время открытого состояния транзисторов, а также симметричность силовой схемы преобразователя.

В основу силовой части нашего самодельного сварочного полуавтомата инверторного типа взята схема асимметричного моста, или как его еще называют, “косой мост”. Это однотактный прямоходовый преобразователь. Преимущества такой схемы – простота, надежность, минимальное количество деталей, высокая помехоустойчивость. До сих пор многие производители выпускают свои изделия по схеме “косого моста”. Без недостатков тоже не обойтись – это большие импульсные токи от блока питания, меньший, чем в других схемах, КПД, большие токи через силовые транзисторы.

Блок-схема прямоходового преобразователя “косой мост”

Блок схема такого аппарата показана на рисунке:

Транзисторы силовые VT1 и VT2 работают в одной фазе, т.е.одновременно открываются и закрываются, поэтому по сравнению с полным мостом ток через них в два раза больше. Трансформатор TT обеспечивает обратную связь по току.
Узнать больше о всех типах инверторных преобразователей для сварочных аппаратов можно из книги .

Описание схемы инвертора

Полуавтомат сварочный инверторный, работающий в режимах ММА (дуговая сварка) и MAG (сварка специальной проволокой в газовой среде).

Плата управления

На плате управления установлены следующие узлы инвертора: задающий генератор с трансформатором гальванической развязки, блоки обратной связи по току и напряжению, узел управления реле, блок термозащиты, блок “антистик”.

Задающий генератор

Узел регулировки тока (для режима MMA) и задающий генератор (ЗГ) собраны на микросхемах LM358N и UC2845. В качестве ЗГ выбрана UC2845, а не более распространенная UC3845 ввиду более стабильных параметров первой.

Частота генерации зависит от элементов С10 и К19, и рассчитывается по формуле: f = (1800/(R*C))/2, где R и С в килоомах и нанофарадах, частота в килогерцах. В данной схеме частота составляет 49КГц.

Еще один важный параметр – коэффициент заполнения, рассчитываемый по формуле Кзап = t/T. Он не может быть более 50%, и на практике составляет 44-48%. Зависит он от соотношения номиналов С10 и R19. Если конденсатор брать как можно меньше, а резистор – как можно больше, то Кзап будет близок к 50%.

Сформированные ЗГ импульсы подаются на ключ VT5, работающий на трансформатор гальванической развязки T1 (ТГР), намотанный на сердечник EE25, применяемый в электронных блоках запуска люминесцентных ламп (электронных балластах). Все обмотки удаляются и наматываются новые согласно схеме. Вместо транзистора IRF520 можно использовать любой из этой серии – IRF530, 540, 630 и др.

Обратная связь по току

Как упоминалось ранее, для дуговой сварки важно стабильный ток на выходе, для полуавтоматической – неизменное напряжение. На трансформаторе тока TT организована обратная связь по току, он представляет собой ферритовое кольцо типоразмера К 20 х 12 х 5, одетое на нижний (по схеме) вывод первичной обмотки силового трансформатора. В зависимости от тока первичной обмотки T2 ширина импульсов задающего генератора уменьшается или увеличивается, поддерживая выходной ток неизменным.

Обратная связь по напряжению

Сварочный полуавтомат инверторного типа требует ОС по напряжению, для этого в режиме MAG переключателем S1.1 напряжение с выхода устройства подается на узел регулировки выходного напряжения, собранного на элементах R55, D18, U2. Мощный резистор К50 задает начальный ток. А контактами S1.2 ключ на транзисторе VT1 закорачивает на максимум тока регулятор R2, и ключ VT3 отключает режим “антистик” (отключение ЗГ при залипании электрода).

Блок термозащиты

Самодельный сварочный полуавтомат имеет в составе схему защиты от перегрева: это обеспечивает узел на транзисторах VT6, VT7. Датчики температуры на 75 град.С (их два, нормально замкнутые, соединены последовательно) установлены на радиатор выходных диодов и на один из радиаторов силовых транзисторов. При превышении температуры транзистор VT6 закорачивает на землю вывод 1 UC2845 и срывает генерацию импульсов.

Узел управления реле

Данный блок собран на микросхеме DD1 CD4069UB (аналог 561ЛН2) и транзисторе VT14 BC640. Эти элементы обеспечивают следующий режим работы: при нажатии на кнопку сразу включается реле клапана газа, примерно через секунду транзистор VT17 позволяет запуститься генератору и одновременно включается реле протяжного механизма.

Непосредственно реле, управляющие “протяжкой” и клапаном газа, а также вентиляторы питаются от стабилизатора на МС7812, смонтированном на плате управления.

Силовой блок на транзисторах HGTG30N60A4

C выхода ТГР импульсы, предварительно сформированные драйверами на транзисторах VT9 VT10, подаются на силовые ключи VT11, МЕ12. Параллельно выводам коллектор-эмиттер этих транзисторов подключены “снабберы” – цепочки из элементов С24, D47, R57 и C26, D44, R59, служащие для удержания мощных транзисторов в области допустимых значений. В непосредственной близости от ключей установлен конденсатор С28, собранный из 4-ёх емкостей 1мк х 630v. Стабилитроны Z7, Z8 необходимы для ограничения напряжения на затворах ключей на уровне 16 вольт. Каждый транзистор установлен на радиатор от компьютерного процессора с вентилятором.

Силовой трансформатор и выпрямительные диоды

Основной элемент схемы сварочного полуавтомата – мощный выходной трансформатор T2. Он собран на двух сердечниках E70, материал N87 фирмы EPCOS.

Расчет сварочного трансформатора

Витки первичной обмотки рассчитаны по формуле: N = (Uпит * tимп)/(Bдоп * Sсеч),
где Uпит = 320B – максимальное напряжение питания;
tимп = ((1000/f)/2)*К – длительность импульса, К = (Кзап*2)/100 = (0,45*2)/100 = 0,9 tимп = ((1000/49)/2)*0,9 = 9,2;
Вдоп = 0,25 – допустимая индукция для материала сердечника;
Sсеч = 1400 – сечение сердечника.
N = (320 * 9.2)/(0,25 * 1400) = 8.4, округляем до 9 витков.
Отношение витков вторички к первичке должно быть примерно 1/3, т.е. мотаем 3 витка вторичной обмотки.

Силовой трансформатор можно мотать и на другом типоразмере, расчет витков осуществляется по приведенной выше формуле. Например, для сердечника 2 х Е80 при f = 49Khz витков в первичке: 16, вторичке: 5.

Выбор сечения проводов первичной и вторичной обмоток, намотка трансформатора

Сечение проводов выбираем из расчета 1мм.кв = 10А выходного тока. Данный аппарат должен выдавать в нагрузке примерно 190А, поэтому берем сечение вторички 19мм.кв (жгут из 61 провода диаметром 0,63мм). Сечение первички выбирается в 3 раза меньше, т.е. 6мм.кв. (жгут из 20 проводов диаметром 0,63мм). Сечение провода в зависимости от его диаметра рассчитывается как: S = D²/1,27 где D – диаметр провода.

Намотка производится на каркас из текстолита 1мм, без боковых щечек. Каркас одет на деревянную оправку по размерам сердечника. Мотается первичная обмотка (все витки в один слой). Затем 5 слоев плотной трансформаторной бумаги, наверх – вторичная обмотка. Витки сжаты пластмассовыми стяжками. Затем каркас с обмотками снимается с оправки и пропитывается лаком в вакуумной камере. Камера была сделан из литровой банки с плотной крышкой и выведенным шлангом, одетым на всасывающую трубку компрессора от холодильника (можно просто опустить транс в лак на сутки, думаю, тоже пропитается).

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Наиболее часто при построении сварочных инверторов применяют три основных типа высокочастотных преобразователей: полумост, ассиметричный мост (или "косой мост") и полный мост. Под видом полумоста и полного моста, являются резонансные преобразователи. В зависимости от системы управления выходными параметрами, преобразователи бывают с ШИМ (широтно-импульсная), с ЧИМ (частотная регулировка), с фазовой регулировкой, и комбинациями из этих трёх. Все эти типы преобразователей имеют свои достоинства и свои недостатки. Начнем с полумоста с ШИМ. Блок схема такого преобразователя показана на Рис.3.

Это самый простой преобразователь из семейства двухтактников, но от этого не менее надёжный. Недостатком этой схемы является то, что "раскачка" напряжения на первичной обмотке силового трансформатора, равна половине напряжения питания. Но с другой стороны, этот факт является плюсом, можно применить сердечник меньшего размера, без опасения захода в режим насыщения.

Для инверторов небольшой мощности (2-ЗкВт), такой преобразователь весьма перспективен. Но ШИМ управление требует особой тщательности при монтаже силовых цепей, для управления силовыми транзисторами необходимо ставить драйверы. Транзисторы такого полумоста работают в режиме жёсткого переключения, поэтому к управляющим сигналам предъявляются повышенные требования.

Обязательно наличие "мёртвого времени" между двумя противофазными импульсами, отсутствие паузы, или недостаточная её длительность, всегда приводит к возникновению сквозного тока через силовые транзисторы.

Последствия легко предсказуемы - выход транзисторов из строя. Весьма перспективным видом полумостового преобразователя, является резонансный полумост. Блок схема такого полумоста приведена на Рис.4.


Ток протекающий через силовые цепи имеет форму синусоиды, а это снимает нагрузку с фильтрующих конденсаторов.

При таком построении силовые ключи не нуждаются в драйверах! Достаточно обыкновенного импульсного трансформатора, чтобы переключить силовые транзисторы. Качество управляющих импульсов не столь существенно, как в схеме с ШИМ, хотя пауза ("мёртвое время") должна быть.

Ещё один плюс, эта схема позволяет обойтись без токовой защиты и форма ВАХ (вольт - амперная характеристика) имеет сразу падающий вид и не нуждается в параметрическом формировании.

Выходной ток ограничен только индуктивностью намагничивания трансформатора и может достигать значительных величин при КЗ, это необходимо учитывать при выборе выходных диодов, но это свойство положительно влияет на поджиг и горение дуги!

Обычно выходные параметры регулируются изменением частоты, однако применение фазовой регулировки дает гораздо больше плюсов и является наиболее перспективной для сварочного инвертора, так как позволяет обойти такое неприятное явление, как совпадение резонанса с режимом КЗ, да и диапазон регулировки выходных параметров намного шире. Фазовая регулировка позволяет менять выходной ток практически от 0 до Imax.

Следующая схема - ассиметричный мост, или "косой мост". Блок схема такого преобразователя показана на Рис.5.


Ассиметричный мост - однотактный, прямоходовой преобразователь.

Преобразователь такой конфигурации очень популярен, как у производителей сварочных инверторов, так и у радиолюбителей. Первые сварочные инверторы были построены именно, как "косой мост". Простота и надёжность, широкие возможности для регулировки выходного тока, помехозащищённость - всё это привлекает разработчиков сварочных инверторов до сих пор.

И хотя недостатки такого преобразователя довольно существенны, это большие токи через транзисторы, высокие требования к форме управляющих импульсов, что подразумевает использование мощных драйверов для управления силовыми ключами, высокие требования к монтажу силовых цепей, большие импульсные токи предъявляют высокие требования к конденсаторам входного фильтра, электролитические конденсаторы очень не любят большие импульсные токи. Для удержания транзисторов в ОДЗ (области допустимых значений) требуются RCD цепочки (снабберы).

Но, несмотря на все эти недостатки и малый КПД, "косой мост" до наших дней применяется в сварочных инверторах. Транзисторы Т1 и Т2 работают синфазно, вместе открываются и вместе закрываются. Энергия накапливается не в трансформаторе, а в выходной катушке индуктивности дросселя. Рабочий цикл не превышает 50%, именно поэтому для получения одинаковой мощности с мостовым преобразователем, требуется двойной ток через транзисторы. Более детально работа такого преобразователя будет рассмотрена на примере реального сварочного инвертора.

Следующий тип преобразователя - полный мост с ШИМ. Классический двухтактный преобразователь! Блок схема полного моста приведена на Рис.6.


Мостовая схема даёт возможность получить мощность в 2 раза больше, чем полумост, и в 2 раза больше чем "косой мост", при тех же величинах токов и потерь на переключение. Это объясняется тем, что "раскачка" напряжения первичной обмотки силового трансформатора, равна напряжению питания.

Соответственно для получения одинаковой мощности, например с полумостом (в котором напряжение раскачки равно 0,5U пит.), потребуется ток через транзисторы в 2 раза меньше! Транзисторы полного моста работают по диагонали, когда Т1 - ТЗ открыты, Т2 - Т4 закрыты, и наоборот. Трансформатор тока отслеживает амплитудное значение тока, протекающего через включенную диагональ. Регулировать выходной ток такого преобразователя можно двумя способами:

1) изменять длительность управляющего импульса, оставляя неизменным напряжение отсечки;

2) изменять уровень напряжения отсечки приходящего с токового трансформатора, оставляя неизменным длительность управляющих импульсов.

Оба этих способа позволяют изменять выходной ток в достаточно широких пределах. Недостатки и требования у полного моста с ШИМ, точно такие, как и у полумоста с ШИМ. (См. выше). И наконец, рассмотрим наиболее перспективную схему ВЧ преобразователя, для сварочного инвертора - резонансный мост. Блок схема представлена на Рис.7.


Как может показаться на первый взгляд, схема резонансного моста не сильно отличается от моста с ШИМ, и это действительно так. Практически дополнительно введена только LC резонансная цепочка, включенная последовательно с силовым трансформатором. Однако введение этой цепочки полностью меняет процессы перекачки мощности. Уменьшаются потери, увеличивается КПД, на порядки снижается уровень электромагнитных помех, понижается нагрузка на входные электролиты. Как видите можно полностью убрать защиту по току, драйверы силовых транзисторов могут понадобиться лишь в том случае, если применяются MOSFET транзисторы с ёмкостью затвора больше 5000pF. Для IGBT транзисторов достаточно одного импульсного трансформатора.

Управлять выходным током резонансного преобразователя можно двумя способами, это частотным и фазовым. Оба они упоминались раньше, в описании резонансного полумоста. И последний тип ВЧ преобразователя - полный мост с дросселем рассеяния. Его схема практически ничем не отличается от схемы резонансного моста (полумоста), точно так включена LC цепочка последовательно с трансформатором, только она не является резонансной. С =22мкфх63В работает как симметрирующий конденсатор, a L дросселя, как реактивное сопротивление, величина которого линейно зависит от частоты. Управление такого преобразователя - частотное. С увеличением частоты - сопротивление L, увеличивается. Ток через силовой трансформатор уменьшается. Просто и надёжно. Большинство промышленных инверторов построены на таком принципе регулировки и ограничения выходного тока.

Аппарат дуговой сварки должен обеспечивать падающую вольтамперную характеристику в нагрузке (дуге). В мостовых инверторах, как правило, падающая характеристика обеспе­чивается достаточно сложной электроникой с обязательной обратной связью по току. С точки зрения простоты управле­ния, на мой взгляд, наиболее привлекателен именно резо­нансный мост. В нем падающая характеристика источника сварочного тока обеспечивается параметрическими свойст­вами резонансной цепочки в первичной цепи инвертора.

Особенностью инвертора, который представлен в этой статье, является не только использование полного резонанс­ного моста, но и управление им с помощью микроконтрол­лера PIC16F628-20I/P.

Сразу заметим, что максимальный сварочный ток ин­вертора зависит от настройки. Его значение целиком опре­деляется шириной немагнитного зазора в магнитопроводе ре­зонансного дросселя. Для используемых в инверторе сило­вых элементов, при условии соблюдения их тепловых режи­мов, сварочный ток может достигать 200 А.

Принципиальная схема инвертора разделена на две час­ти. На рис.1 показана силовая часть, а на рис.2 — схема бло­ка питания с блоком управления. Классический мостовой сва­рочный инвертор состоит из выпрямителя сетевого напряже­ния с фильтрующими конденсаторами. Постоянное напряже­ние 300 В с помощью 4 ключей преобразуется в переменное более высокой частоты, которое с помощью сварочного транс­форматора понижается, а затем выпрямляется.

Силовая часть

В резонансных преобразователях последовательно с пер­вичной обмоткой сварочного трансформатора Т1 включены ре­зонансный дроссель L1 и резонансный конденсатор С1-С10 (см. рис.1 на котором силовые цепи выделены жирными ли­ниями). Индуктивность последовательного контура состоит из индуктивности резонансного дросселя L1 и индуктивности пер­вичной обмотки трансформатора Т1. Вторичная обмотка Т1 на­гружена сварочной дугой. Если емкость С1-С10 и индуктив­ность L1 величины постоянные, то индуктивность первичной обмотки Т1 зависит от сопротивления нагрузки во вторичной обмотке, т.е. от сварочного тока. Максимальной индуктивнос­ти первичной обмотки Т1 соответствует режим «холостого хо­да» инвертора, а минимальной — режим короткого замыкания. Сопротивление нагрузки определяет также добротность конту­ра. Таким образом, резонансная частота контура минимальна в режиме «холостого хода» (при максимальной индуктивности первичной обмотки Т1) и максимальна в режиме короткого замыкания (при минимальной индуктивности первичной обмот­ки Т1). Когда нагрузкой инвертора служит сварочная дуга, ре­зонансная частота контура зависит от тока в дуге.

Из всего сказанного выше, очевидно, что частота инвер­тора при работе на максимальную мощность в дуге должна быть ниже собственной частоты резонансного контура инвер­тора в режиме короткого замыкания и выше ее в режиме «холостого хода». Оптимально, чтобы резонанс наступал на собственной частоте контура, при которой в дуге развивает­ся максимальная мощность (f МАКС. МОЩН.). Именно это яв­ляется основным критерием правильной настройки инверто­ра. Если в этом случае увеличивать частоту инвертора от­носительно f МАКС. МОЩН. , ток в дуге уменьшается за счет увеличения индуктивного сопротивления резонансного дрос­селя L1. Так осуществляется частотное регулирование тока в сварочной дуге.

Резонанс в контуре инвертора при коротком замыкании и неправильной настройке инвертора возможен и на часто­те выше, чем f МАКС. МОЩН. .

Заметим также, что резонанс недопустим в режиме ко­роткого замыкания для транзисторных ключей инвертора по причине возникновения сверхтока в первичной цепи. По­скольку режим короткого замыкания является штатным ре­жимом для сварочного аппарата, необходимо не допускать работу инвертора на частотах выше f МАКС. МОЩН. при корот­ком замыкании в сварочной цепи.

Для этого в данном инверторе микроконтроллером непре­рывно отслеживается факт короткого замыкания сварочных проводов с помощью специального детектора. При возникно­вении короткого замыкания микроконтроллер автоматически уменьшает частоту инвертора до ранее заданного значения f МАКС. МОЩН. — на этой частоте резонанс в коротком замыка­нии невозможен, что предотвращает протекание чрезмерного тока в первичной цепи и, соответственно, через ключи.

В силовой части (рис.1) R13 — пусковой резистор. Он ограничивает зарядный ток оксидных конденсаторов С16, С17 при включении аппарата. Диодный мост VD14-VD21 предназ­начен для выпрямления сетевого напряжения 220 В / 50 Гц, которое сглаживается конденсаторами С15-С17 и подается на выходной мост схемы, состоящий из 4 ключей на IGBT- транзисторах VT1-VT4.

Супрессоры VD3, VD9 и VD22 защищают ключи от вы­бросов напряжения. Резисторы R5, R6 разряжают резо­нансный конденсатор при выключении инвертора. Стабилитроны VD1, VD2, VD4, VD5 не допускают превышения на­пряжения на затворах клю­чей выше 18 В. Резисторы R1, R3, R7 и R9 ограничи­вают выходной ток драйве­ров в моменты заряда-раз­ряда затворных емкостей ключей. Резисторы R2, R4, R8, R10 обеспечивают на­дежное закрытие ключей в моменты, когда отсутствует питание драйверов.

Сварочный трансформа­тор Т1 с коэффициентом трансформации 6 понижает напряжение и обеспечивает гальваническую развязку вы­хода относительно сетевой части инвертора. Переменное напряжение с вторичной обмот­ки сварочного трансформатора выпрямляет­ся диодами VD6, VD7 и поступает через сва­рочные провода на электрод и сваривае­мые поверхности. Цепочки R11C13 и R12C14 служат для поглощения энергии выбросов об­ратного напряжения выходного выпрямите­ля. Для устойчивого горения дуги при малых токах, а также для облегчения ее зажига­ния предусмотрен удвоитель напряжения, со­бранный на элементах С11, С12, VD10-VD13, С19, С20 и L2. Резистор R14 служит нагруз­кой удвоителя. Супрессор VD8 защищает ди­оды выходного выпрямителя от выбросов об­ратного напряжения.

Блок питания

Построен по схеме обратноходового преобразователя на основе специализированной микросхемы DA6 TNY264 по типовой схеме (рис.2) . Он обеспечивает питание драйве­ров, реле и микроконтроллерного блока управления. Элект­ропитание драйверов верхних ключей гальванически изоли­ровано от канала питания реле 24 В и канала питания ниж­них драйверов. Для питания микроконтроллера DD1 (5 В) при­менен параметрический стабилизатор DA7. Драйвера DA1-DA4 типа HCPL3120 предназначены для управления ключами VT1-VT4 и обеспечивают крутые фронты управляющих им­пульсов на затворах этих транзисторов.

Детектор короткого замыкания собран на элементах R25, R27, R28, DA8, VD32, VD33, С38. При напряжении на сва­рочных проводах ниже 9 В (короткое замыкание) на входе RB4 контроллера DD1 появляется высокий логический уро­вень, а при напряжении более 9 В (короткого замыкания нет) на входе RB4 — низкий логический уровень.

В позиции DD1 использован широко распространенный микроконтроллер (МК) PIC16F628-20I/P в DIP-корпусе.

Работа инвертора

Как только запустится блок питания, начинает работать программа микроконтроллера. Спустя задержку примерно 5 с включится зуммер и начнет работать инвертор. Как только напряжение в сварочных проводах превысит 9 В, МК откро­ет ключ VT5, который включит реле К1, а контакты реле зашунтирует зарядный резистор R13. Зуммер также отключит­ся. С этого момента инвертор готов к работе. Частота рабо­ты инвертора будет определяться положением потенциомет­ра R18. Причем минимальной частоте (она же f МАКС. МОЩН.) соответствует максимальный сварочный ток, а максимальной частоте — минимальный ток. Частота изменяется ступенчато (дискретно). Используется всего 17 позиций. При вращении потенциометра R18 изменение частоты сопровождается ко­ротким звуковым сигналом зуммера. Таким образом, мож­но по звуку зуммера изменить частоту сварочного тока на нужное число позиций.

При коротком замыкании в сварочных проводах инвер­тор автоматически начинает работать на частоте f МАКС. МОЩН. ,- Работа инвертора в режиме короткого замыкания сопро­вождается звуковым сигналом зуммера. Если короткое за­мыкание длится более 1 с, то работа инвертора блокирует­ся и спустя 3 с вновь возобновляется. Так реализована функ­ция антизалипания электрода.

При отсутствии короткого замыкания на вход RB4 подается низкий логический уровень, и частота инверто­ра определяется положением потенциометра R18.

Для защиты выходных ключей от перегрева исполь­зуются в качестве датчиков два термостата TS1 и TS2. Если произошло отключение хотя бы одного из термо­статов, то работа инвертора блокируется. Зуммер изда­ет прерывистый частый звуковой сигнал до остывания ра­диатора, на котором установлен сработавший термостат.

Конструкция и детали Резонансный дроссель L1 намотан на магнитопроводе ETD59, материал №87 фирмы EPCOS и содержит 12 вит­ков медного провода диаметром 2 мм в лаковой изоляции. Провод наматыва­ется с обязательным зазором между витками. Для обеспечения зазора мож­но использовать толстую нить. Для фик­сации обмотки нужно промазать витки эпоксидным клеем. Половинки магнитопровода стыкуются с немагнитным за­зором 1…2 мм. Более точное значение немагнитного зазора подбирается при настройке резонансной частоты. Во вре­мя работы инвертора магнитопровод ре­зонансного дросселя может сильно на­греваться. Это связано с насыщением феррита при работе в резонансе. Для обеспечения надежной фик­сации зазора магнитопровода его половинки должны стягиваться металлическими шпильками. При этом необ­ходимо обеспечить расстоя­ние от зазора до шпилек не менее 5 мм. Иначе рядом с зазором шпильки могут расплавиться. По этой же причине недопустимо стяги­вать дроссель сплошным ме­таллическим кожухом.

Трансформатор Т1 намо­тан на магнитопроводе Е65, материал №87 фирмы EPCOS. Сначала в один ряд мотают первичную обмотку — 18 витков медного провода диамет­ром 2 мм в лаковой изоляции. Поверх первичной обмотки мотают обмотки II и III. Каждая из них занимает половину каркаса. Обмотки II и III содержат по 3 витка в четыре мед­ных провода диаметром 2 мм. Половинки магнитопровода трансформатора стыкуют без зазора и надежно фиксируют.

Дроссель L2 содержит 20 витков монтажного провода сечением 1,5 мм 2 , намотанных на ферритовом кольце К28х16х9.

Трансформатор Т2 наматывают на феррите Ш5х5 с про­ницаемостью 2000 НМ. Половинки магнитопровода стыкуют с зазором 0,1…0,2 мм. Обмотка I содержит 180 витков про­вода ПЭВ-1 диаметром 0,2 мм. Обмотку II мотают в один ряд, содержит 47 витков такого же провода. Обмотки III, IV и V содержат по 33 витка провода ПЭВ-1 диаметром 0,25 мм. Между обмотками нужно проложить 2 слоя изоляции (на­пример, малярный скотч). Фазировка подключения обмоток указана на рис.2.

Резонансные конденсаторы С1-С10 допустимо применять только качественные, пленочные на напряжение не менее 1000 В. Предпочтительнее использовать конденсаторы типа К78-2. Такого же типа должен быть блокирующий конденса­тор С15.

Блок питания в настройке не нуждается и при исправ­ных деталях начинает работать сразу. Необходимо только проконтролировать величины напряжений для питания драй­веров 16…17 В. При проверке блока питания на его вход­ные клеммы GND и +300 В можно подать сетевое напряже­ние 220 В. Таким же образом следует запитывать блок пи­тания при настройке резонансной частоты.

Во время работы инвертора все его силовые элементы нагреваются. От того, как грамотно обдуваются эти элемен­ты, будет зависеть время непрерывной работы аппарата и его долговечность. Радиаторы с большой площадью нужно предусмотреть для входного выпрямителя VD14-VD21, тран­зисторов VT1-VT4 и выходного выпрямителя VD6, VD7. При­нудительное воздушное охлаждение необходимо также резо­нансному дросселю L1, сварочному трансформатору Т1 и ди­одам удвоителя VD10-VD13. Защитные термостаты TS1 и TS2 типа KSD250V устанавливают на радиаторы верхних ключей и выходных диодов. Все остальные элементы инвертора в обдуве и радиаторах не нуждаются.

Настройка резонансной частоты

Для настройки инвертора необходим ЛАТР и нагрузоч­ный реостат сопротивлением 0,15 Ом. Реостат должен вы­держивать кратковременное протекание тока до 200 А. За­зор магнитопровода резонансного дросселя выставляют при­мерно 1 мм. Между контактами 3 и 4 оптопары DA8 уста­навливают перемычку. Устанавливают «прошитый» микро­контроллер в блок управления.

Блок питания при настройке следует запитать отдельно. Для этого, не включая аппарат в сеть, на провода GND и +300 В блока питания нужно подать сетевое напряжение 220 В.

Силовая часть пока обесточена. После включения питания спустя 5 с должен включиться зуммер, затем звук должен прекратиться, и включиться реле. Нажимаем одновременно обе кнопки SB1 и SB2. Удерживаем кнопки до появления звукового сигнала зуммера. Отпускаем кнопки. Непрерыв­ный звук прекратится, и зуммер начнет издавать прерывис­тый сигнал с периодом примерно 2 с. Это соответствует ре­жиму настройки резонансной частоты.

Если все так, то с помощью осциллографа контролируем наличие двуполярных импульсов между затворами транзис­торов VT2 и VT4 частотой 30 кГц амплитудой не менее 15 В и ступенькой «мертвого времени» 2 мкс. Такой же сигнал должен быть между затворами VT1 и VT3. Если все так, запитываем силовую часть через ЛАТР и выставляем напря­жение 20…30 В.

К сварочным проводам можно включить лампочку на 12 В. Если лампочка светится, включаем в сварочные провода ре­остат сопротивлением 0,15 Ом и вольтметр постоянного то­ка. Выставляем на ЛАТРе напряжение 30…40 В и начинаем настройку. Кнопкам SB1 и SB2 уменьшаем или увеличиваем частоту инвертора. Пределы изменения частоты 30…42 кГц. Подстраивая частоту кнопками, добиваемся максимального напряжения на реостате. Если напряжение продолжает уве­личиваться при уменьшении частоты до 30 кГц, то необходи­мо увеличить зазор в магнитопроводе резонансного дроссе­ля и повторить настройку снова. Если при увеличении час­тоты до 42 кГц напряжение на реостате продолжает расти, необходимо уменьшить зазор в магнитопроводе резонансно­го дросселя и повторить настройку снова.

Нужно добиться резонанса, т.е. настроить схему так, что­бы увеличение или уменьшение частоты инвертора приводи­ло бы к уменьшению напряжения на реостате. При указан­ных на схеме элементах предпочтительней всего добиться такого зазора в резонансном дросселе, чтобы резонанс с на­грузкой 0,15 Ом возникал на частоте 33…37 кГц. Резонанс на большей частоте увеличит максимальный сварочный ток, но ключи и выходные диоды будут работать на пределе.

Как только резонансная частота настроена, нажимаем обе кнопки одновременно. После продолжительного звуко­вого сигнала произойдет запись значения резонансной час­тоты в энергонезависимую память микроконтроллера. Вра­щая потенциометр R18, проверяем работу частотного регу­лирования. Минимальная частота должна быть равна резо­нансной. При вращении потенциометра изменение частоты должно сопровождаться коротким звуковым сигналом (всего 17 ступеней).

Если все происходит именно так, собираем полностью схему инвертора. Удаляем перемычку между контактами 3 и 4 оптопары DA8. Включаем инвертор в сеть. Через 5 с про­звучит сигнал зуммера, затем включится реле, и звук пре­кратиться. Потенциометром R18 выставляем минимальную частоту (она же f МАКС. МОЩН.), соответствующую максималь­ному току. Кратковременно нагружаем инвертор реостатом сопротивлением 0,15 Ом и измеряем напряжение в нагруз­ке. Если это напряжение превышает 23 В, то можно считать настройку завершенной. Если меньше, то следует увеличить зазор в магнитопроводе резонансного дросселя и повторить настройку сначала.

Принципиальная схема заводского сварочного инвертора «Ресанта» (нажмите, чтобы увеличить)

Схема инвертора от немецкого производителя FUBAG с рядом дополнительных функций (нажмите, чтобы увеличить)

Пример принципиальной электрической схемы сварочного инвертора для самостоятельного изготовления (нажмите, чтобы увеличить)

Принципиальная электрическая схема инверторного устройства состоит из двух основных частей: силового участка и цепи управления. Первым элементом силового участка схемы является диодный мост. Задача такого моста как раз и состоит в том, чтобы преобразовать переменный ток в постоянный.

В постоянном токе, преобразованном из переменного в диодном мосту, могут возникать импульсы, которые необходимо сглаживать. Для этого после диодного моста устанавливается фильтр, состоящий из конденсаторов преимущественно электролитического типа. Важно знать, что напряжение, которое выходит из диодного моста, примерно в 1,4 раза больше, чем его значение на входе. Диоды выпрямителя при преобразовании переменного тока в постоянный очень сильно нагреваются, что может серьезно сказаться на их работоспособности.

Чтобы защитить их, а также другие элементы выпрямителя от перегрева, в данной части электрической схемы используют радиаторы. Кроме того, на сам диодный мост устанавливается термопредохранитель, в задачу которого входит отключение электропитания в том случае, если диодный мост нагрелся до температуры, превышающей 80–90 градусов.

Высокочастотные помехи, создаваемые при работе инверторного устройства, могут через его вход попасть в электрическую сеть. Чтобы этого не произошло, перед выпрямительным блоком схемы устанавливается фильтр электромагнитной совместимости. Состоит такой фильтр из дросселя и нескольких конденсаторов.

Сам инвертор, который преобразует уже постоянный ток в переменный, но обладающий значительно более высокой частотой, собирается из транзисторов по схеме «косой мост». Частота переключения транзисторов, за счет которых и происходит формирование переменного тока, может составлять десятки или сотни килогерц. Полученный таким образом высокочастотный переменный ток имеет амплитуду прямоугольной формы.

Получить на выходе устройства ток достаточной силы для того, чтобы можно было с его помощью эффективно выполнять сварочные работы, позволяет понижающий напряжение трансформатор, установленный за инверторным блоком. Для того чтобы получить с помощью инверторного аппарата постоянный ток, после понижающего трансформатора подключают мощный выпрямитель, также собранный на диодном мосту.

Элементы защиты инвертора и управления им

Избежать влияния негативных факторов на работу инвертора позволяют несколько элементов в его принципиальной электрической схеме.

Для того чтобы транзисторы, которые преобразуют постоянный ток в переменный, не сгорели в процессе своей работы, используются специальные демпфирующие (RC) цепи. Все блоки электрической схемы, которые работают под большой нагрузкой и сильно нагреваются, не только обеспечены принудительным охлаждением, но также подключены к термодатчикам, отключающим их питание в том случае, если температура их нагрева превысила критическое значение.

Из-за того, что конденсаторы фильтра после своей зарядки могут выдавать ток большой силы, который в состоянии сжечь транзисторы инвертора, аппарату необходимо обеспечить плавный пуск. Для этого используют стабилизаторные устройства.

В схеме любого инвертора имеется ШИМ-контроллер, который отвечает за управление всеми элементами его электрической схемы. От ШИМ-контроллера электрические сигналы поступают на полевой транзистор, а от него – на разделительный трансформатор, имеющий одновременно две выходные обмотки. ШИМ-контроллер посредством других элементов электрической схемы также подает управляющие сигналы на силовые диоды и силовые транзисторы инверторного блока. Для того чтобы контроллер мог эффективно управлять всеми элементами электрической схемы инвертора, на него также необходимо подавать электрические сигналы.

Для выработки таких сигналов используется операционный усилитель, на вход которого подается формируемый в инверторе выходной ток. При расхождении значений последнего с заданными параметрами операционный усилитель и формирует управляющий сигнал на контроллер. Кроме того, на операционный усилитель поступают сигналы от всех защитных контуров. Это необходимо для того, чтобы он смог отключить инвертор от электропитания в тот момент, когда в его электрической схеме возникнет критическая ситуация.

Достоинства и недостатки сварочных аппаратов инверторного типа

Аппараты, которые пришли на смену привычным всем трансформаторам, обладают рядом весомых преимуществ.

  • Благодаря совершенно иному подходу к формированию и регулированию сварочного тока масса таких устройств составляет всего 5–12 кг, в то время как сварочные трансформаторы весят 18–35 кг.
  • Инверторы обладают очень высоким КПД (порядка 90%). Это объясняется тем, что в них расходуется значительно меньше лишней энергии на нагрев составных частей. Сварочные трансформаторы, в отличие от инверторных устройств, очень сильно греются.
  • Инверторы благодаря такому высокому КПД потребляют в 2 раза меньше электрической энергии, чем обычные трансформаторы для сварки.
  • Высокая универсальность инверторных аппаратов объясняется возможностью регулировать с их помощью сварочный ток в широких пределах. Благодаря этому одно и то же устройство можно использовать для сварки деталей из разных металлов, а также для ее выполнения по разным технологиям.
  • Большинство современных моделей инверторов наделены опциями, которые минимизируют влияние ошибок сварщика на технологический процесс. К таким опциям, в частности, относятся «Антизалипание» и «Форсирование дуги» (быстрый розжиг).
  • Исключительная стабильность напряжения, подаваемого на сварочную дугу, обеспечивается за счет автоматических элементов электрической схемы инвертора. Автоматика в данном случае не только учитывает и сглаживает перепады входного напряжения, но и корректирует даже такие помехи, как затухание сварочной дуги из-за сильного ветра.
  • Сварка с использованием инверторного оборудования может выполняться электродами любого типа.
  • Некоторые модели современных сварочных инверторов имеют функцию программирования, что позволяет точно и оперативно настраивать их режимы при выполнении работ определенного типа.

Как у любых сложных технических устройств, у сварочных инверторов есть и ряд недостатков, о которых также необходимо знать.

  • Инверторы отличаются высокой стоимостью, на 20–50% превышающей стоимость обычных сварочных трансформаторов.
  • Наиболее уязвимыми и часто выходящими из строя элементами инверторных устройств являются транзисторы, стоимость которых может составлять до 60% цены всего аппарата. Соответственно, является достаточно дорогостоящим мероприятием.
  • Инверторы из-за сложности их принципиальной электрической схемы не рекомендуется использовать в плохих погодных условиях и при отрицательных температурах, что серьезно ограничивает область их применения. Для того чтобы применять такое устройство в полевых условиях, необходимо подготовить специальную закрытую и отапливаемую площадку.
При сварочных работах, выполняемых с использованием инвертора, нельзя использовать длинные провода, так как в них наводятся помехи, отрицательно отражающиеся на работе устройства. По этой причине провода для инверторов делают достаточно короткими (порядка 2 метров), что вносит в сварочные работы некоторое неудобство.

(голосов: 9 , средняя оценка: 4,00 из 5)

Рассказать друзьям