Схема стабилизатора напряжения 220в для дома. Как собрать стабилизатор напряжения своими руками

💖 Нравится? Поделись с друзьями ссылкой

Зачастую для безопасного использования, например, телевизора, как правило, в сельской местности, нужен однофазный стабилизатор напряжения 220В , который при сильном понижении напряжения в электросети выдает на своем выходе номинальное выходное напряжение 220 вольт.

Помимо этого, при эксплуатации большинства типов бытовой электронной техники желательно использовать такой стабилизатор напряжения, который не создает изменений в синусоиде выходного напряжения. Схемы аналогичных стабилизаторов на 220 вольт приводятся во многих журналах по радиоэлектронике.

В данной статье приведем пример одного из вариантов подобного устройства. Схема стабилизатора в зависимости от фактического напряжения в сети имеет 4 диапазона автоматической установки выходного напряжения. Это способствовало значительному расширению границ стабилизации 160…250 вольт. И при всем при этом напряжение на выходе обеспечивается в пределах нормы (220В +/- 5%).

Описание работы однофазного стабилизатора напряжения 220 вольт

В электрическую схему устройства входят 3 пороговых блока, выполненные по принципу , состоящие из стабилитрона и резисторов (R2-VD1-R1, VD5-R3-R6, R5-VD6-R6). Так же в схеме имеются 2 транзисторных ключа VT1 и VT2, которые управляют электромагнитными реле К1 и К2.

Диоды VD2 и VD3 и фильтрующий конденсатор С2 образуют источник постоянного напряжения для всей схемы. Емкости С1 и С3 предназначены для гашения незначительных скачков напряжения в сети. Конденсатор С4 и сопротивление R4 — “искрогасительные” элементы. Для предотвращения выбросов напряжения самоиндукции, в обмотках реле при их отключении в схему добавлены два диода VD4 и VD7.

При безупречной работе трансформатора и пороговых блоков, каждый из 4-х диапазонов регулирования создавал бы интервал напряжения от 198 до 231 вольт, а вероятное сетевое напряжение могло бы находиться в районе от 140…260 вольт.

Тем не менее, в действительности нужно брать во внимание разброс параметров радиодеталей и нестабильность коэффициента трансформации трансформатора при разных нагрузках. В связи с этим у всех 3-х пороговых блоков диапазон выходного напряжения уменьшены по отношению к выходному напряжению: 215±10 вольт. Соответственно сузился и интервал колебания на входе до 160…250 вольт.

Этапы работы стабилизатора:

1. Когда напряжение в электросети меньше 185 вольт, на выходе выпрямителя напряжение мало, для того чтобы сработал один из пороговых блоков. В этот момент контактные группы обоих реле находятся, так как указано на принципиальной схеме. Напряжение на нагрузке равно напряжению сети плюс напряжение вольтодобавки, снимаемое с обмоток II и III трансформатора Т1.

2. Если же напряжение в сети находится в диапазоне 185…205 вольт, то стабилитрон VD5 находится в открытом состоянии. Ток идет через реле К1, стабилитрон VD5 и сопротивления R3 и R6. Этого тока не хватает для того чтобы сработало реле К1. Из-за падения напряжения на R6 происходит открытие транзистора VT2. Этот транзистор в свою очередь включает реле К2 и контактная группа К2.1 переключает обмотку II (вольтодобавка)

3. Если же напряжение в сети находится в диапазоне 205…225 вольт, то в открытом состоянии уже находится стабилитрон VD1. Это приводит к открытию транзистора VT1, по причине этого отключается второй пороговый блок и соответственно транзистор VT2. Реле К2 отключается. В тоже время включается реле К1 и контактной группой К1.1. переходит в другое положение, при котором обмотки II и III не задействованы и поэтому на выходе напряжение будет такое же как и на входе.

4. Если же напряжение в сети находится в диапазоне 225…245 вольт открывается стабилитрон VD6. Это способствует активации третьего порогового блока, что приводит к открытию обоих транзисторных ключей. Оба реле включены. Сейчас уже к нагрузки подключена обмотка III трансформатора Т1, но в противофазе с сетевым напряжением (“минусовая” вольтодобавка). На выходе в данном случае также будет напряжение в районе 205…225 вольт.

При настройке диапазона регулирования нужно тщательно подобрать стабилитроны, поскольку, как известно, они могут значительно отличаться разбросом напряжения стабилизации.

Вместо КС218Ж (VD5) возможно применить стабилитроны КС220Ж. Данный стабилитрон непременно должен быть с двумя анодами, поскольку в интервале сетевого напряжения 225…245 вольт, когда стабилитрон VD6 открывается, открываются и оба транзистора, цепь R3 — VD5 шунтирует сопротивление R6 порогового блока R5-VD6-R6. Для ликвидации шунтирующего воздействия, стабилитрон VD5 должен быть с двумя анодами.

Стабилитрона VD5 на напряжение не более 20В. Стабилитрон VD1 — КС220Ж (22 В); возможно собрать цепь из двух стабилитронов - Д811 и Д810. Стабилитрон КС222Ж (VD6) на 24 вольт. Его возможно поменять на цепь из стабилитронов Д813 и Д810. Транзисторы из серии . Реле К1 и К2 - РЭН34, паспорт ХП4.500.000-01.

Трансформатор собран на магнитопроводе ОЛ50/80-25 из стали Э360 (или Э350). Лента толщиной — 0,08 мм. Обмотка I — 2400 витков намотанных проводом ПЭТВ-2 0,355 (для номинального напряжения 220В) . Обмотки II и III равные, содержат каждая по 300 витков провода ПЭТВ-2 0,9 (13,9 В).

Настраивать стабилизатор необходимо при подключенной нагрузке, для того чтобы была учтена нагрузка на трансформатора Т1.

Напряжение сети, особенно в сельской местности, нередко выходит за пределы, допустимые для питаемой аппаратуры, что приводит к ее выходу из строя.

Избежать столь неприятных последствий возможно с помощью стабилизатора, который поддерживает выходное напряжение в необходимых пределах для нагрузки, а если это невозможно - отключает ее.

Предлагаемое устройство относится к весьма перспективным конструкциям, в которых нагрузка автоматически подключается к соответствующему отводу обмотки автотрансформатора в зависимости от текущего значения напряжения сети.

Годин А.В. Стабилизатор переменного напряжения

Журнал «РАДИО». 2005. №08 (с.33-36)
Журнал «РАДИО». 2005. №12 (с.45)
Журнал «РАДИО». 2006. №04 (с.33)

Из-за нестабильности напряжения в сети в Подмосковье вышел из строя холодильник. Проверка напряжения в течение дня выявила его изменения от 150 до 250 В. Как следствие, занялся вопросом приобретения стабилизатора. Знакомство с ценами на готовые изделия повергло в шок. Стал искать схемы в литературе и Интернет.

Почти подходящий по параметрам стабилизатор с микроконтроллерным управлением описан в . Но его выходная мощность недостаточно высока, переключение нагрузки зависит не только от амплитуды, но и от частоты напряжения сети. Поэтому было решено создать собственную конструкцию стабилизатора, не обладающую этими недостатками.

В предлагаемом стабилизаторе не использован микроконтроллер, что делает его доступным для повторения более широкому кругу радиолюбителей. Нечувствительность к частоте напряжения сети позволяет его использовать в полевых условиях, когда источником электроэнергии является автономный дизель-генератор.

Основные технические характеристики

Входное напряжение, В: 130…270
Выходное напряжение, В: 205…230
Максимальная мощность нагрузки, кВт: 6
Время переключения (отключения) нагрузки, мс: 10

Устройство содержит следующие узлы: Блок питания на элементах T1, VD1, DA1, C2, C5. Узел задержки включения нагрузки C1, VT1-VT3, R1-R5. Выпрямитель для измерения амплитуды напряжения сети VD2, C2 с делителем R13, R14 и стабилитроном VD3. Компаратор напряжения DA2, DA3, R15-R39. Логический контроллер на микросхемах DD1-DD5. Усилители на транзисторах VT4-VT12 с токоограничительными резисторами R40-R48. Индикаторные светодиоды HL1-HL9, семь оптронных ключей, содержащих оптосимисторы U1-U7, резисторы R6-R12, симисторы VS1-VS7. Напряжение сети подключено к соответствующему отводу обмотки автотрансформатора T2 через автоматический выключатель-предохранитель QF1. Нагрузка подключена к автотрансформатору T2 через открытый симистор (один из VS1-VS7).

Стабилизатор работает следующим образом. После включения питания конденсатор C1 разряжен, транзистор VT1 закрыт, а VT2 открыт. Транзистор VT3 закрыт, а так как ток через светодиоды, в том числе входящие в состав симисторных оптронов U1-U7, может протекать только через этот транзистор, то ни один светодиод не горит, все симисторы закрыты, нагрузка отключена. Напряжение на конденсаторе C1 возрастает по мере его зарядки от источника питания через резистор R1. По окончании трехсекундного интервала задержки, необходимого для завершения переходных процессов, срабатывает триггер Шмидта на транзисторах VT1 и VT2, транзистор VT3 открывается и разрешает включение нагрузки.

Напряжение с обмотки III трансформатора T1 выпрямляется элементами VD2C2 и поступает на делитель R13, R14. Напряжение на движке подстроечного резистора R14, пропорциональное напряжению сети, поступает на неинвертирующие входы восьми компараторов (микросхемы DA2,DA3). На инвертирующие входы этих компараторов поступают постоянные образцовые напряжения с резисторного делителя R15-R23. Сигналы с выходов компараторов обрабатывает контроллер на логических элементах «исключающее ИЛИ» (микросхемы DD1-DD5). На линии групповой связи рис. выходы компараторов DA2.1-DA2.4 и DA3.1-DA2.3 обозначены цифрами 1-7, а выходы контроллера - буквами A-H. Выход компаратора DA3.4 не входит в линию групповой связи.

Если напряжение сети меньше 130 В, на выходах всех компараторов и выходах контроллера низкий логический уровень. Транзистор VT4 открыт, включен мигающий светодиод HL1, индицирующий чрезмерно низкое напряжение сети, при котором стабилизатор не может обеспечить питание нагрузки. Все остальные светодиоды погашены, симисторы закрыты, нагрузка отключена.

Если напряжение сети меньше 150 В, но больше 130 В, логический уровень сигналов 1 и A высокий, остальных - низкий. Транзистор VT5 открыт, горят светодиоды HL2 и U1.1, оптосимистор U1.2 открыт, нагрузка соединена с верхним по схеме выводом обмотки автотрансформатора T2 через открытый симистор VS1.

Если напряжение сети меньше 170 В, но больше 150 В, логический уровень сигналов 1, 2 и B высокий, остальных - низкий. Транзистор VT6 открыт, горят светодиоды HL3 и U2.1, оптосимистор U1.2 открыт, нагрузка соединена со вторым сверху по схеме выводом обмотки автотрансформатора T2 через открытый симистор VS2.

Остальные уровни напряжения сети, соответствующие переключению нагрузки на другой отвод обмотки автотрансформатора T2: 190, 210, 230 и 250 В.

Для предотвращения многократного переключения нагрузки, в случае, когда напряжение сети колеблется на пороговом уровне, введен гистерезис 2-3 В (запаздывание переключения компараторов) с помощью положительной обратной связи через R32-R39. Чем больше сопротивления этих резисторов, тем меньше гистерезис.

Если напряжение сети больше 270 В, на выходах всех компараторов и выходе H контроллера высокий логический уровень. На остальных выходах контроллера -низкий уровень. Транзистор VT12 открыт, включен мигающий светодиод HL9, индицирующий чрезмерно высокое напряжение сети, при котором стабилизатор не может обеспечить питание нагрузки. Все остальные светодиоды погашены, симисторы закрыты, нагрузка отключена.

Стабилизатор выдерживает неограниченное время аварийное повышение напряжения сети до 380 В. Надписи, индицируемые светодиодами, аналогичны описанным в .

Вариант с одним трансформатором питания

Конструкция и детали

Стабилизатор собран на печатной плате 90х115 мм из одностороннего фольгированного стеклотекстолита.

Светодиоды HL1-HL9 смонтированы так, чтобы при установке печатной платы в корпус они попали в соответствующие отверстия на передней панели устройства.

В зависимости от конструкции корпуса, возможен вариант монтажа светодиодов со стороны печатных проводников. Номиналы токоограничительных резисторов R41-R47 выбраны так, чтобы ток протекающий через светодиоды симисторных оптронов U1.1-U7.1 был в пределах 15-16мА. Необязательно использовать мигающие светодиоды HL1 и HL9, но их свечение должно быть хорошо заметно, поэтому их можно заменить светодиодами непрерывного излучения красного цвета повышенной яркости, такими как АЛ307КМ или L1543SRC-Е .

Зарубежный диодный мост DF005M (VD1,VD2) можно заменить отечественным КЦ407А или любым с напряжением не менее 50В и током не менее 0,4А. Стабилитрон VD3 может быть любым маломощным, имеющим напряжение стабилизации 4,3…4,7 В.

Стабилизатор напряжения КР1158ЕН6А (DA1) может быть заменен на КР1158ЕН6Б . Микросхему счетверенного компаратора LM339N (DA2,DA3), можно заменить отечественным аналогом К1401СА1 . Микросхему КР1554ЛП5 (DD1-DD5), можно заменить аналогичной из серий КР1561 и КР561 или зарубежной 74AC86PC .

Cимисторные оптроны MOC3041 (U1-U7) можно заменить MOC3061 .

Подстроечные резисторы R14, R15 и R23 проволочные многооборотные СП5-2 или СП5-3 . Постоянные резисторы R16-R22 C2-23 с допуском не ниже 1%, остальные могут быть любыми с допуском 5%, имеющие мощность рассеяния не ниже указанной на схеме. Оксидные конденсаторы C1-C3, C5 могут быть любыми, с емкостью, указанной на схеме, и напряжением не ниже для них указанных. Остальные конденсаторы C4, C6-C8 - любые пленочные или керамические.

Импортные симисторные оптроны MOC3041 (U1-U7) выбраны потому, что они содержат встроенные контроллеры перехода напряжения через ноль. Это необходимо для синхронизации выключения одного мощного симистора и включения другого, чтобы предотвратить замыкания обмоток автотрансформатора.

Мощные симисторы VS1-VS7 также зарубежные BTA41-800B , так как отечественные той же мощности требуют слишком большой ток управления, который превышает предельно допустимый ток оптосимисторов 120мА. Все симисторы VS1-VS7 установлены на одном теплоотводе с площадью охлаждающей поверхности не менее 1600 см2.

Микросхему стабилизатора КР1158ЕН6А (DA1) необходимо установить на теплоотвод, изготовленный из отрезка аллюминиевой пластины или П-образного профиля с площадью поверхности не менее 15 см2.

Трансформатор T1 самодельный, рассчитанный на габаритную мощность 3 Вт, имеющий площадь сечения магнитопровода 1,87 см2. Его сетевая обмотка I, рассчитана на максимальное аварийное напряжение сети 380 В, содержит 8669 витков провода ПЭВ-2 диаметром 0,064 мм. Обмотки II и III содержат по 522 витков провода ПЭВ-2 диаметром 0,185 мм.

Вариант с двумя трансформаторами питания

При номинальном напряжении сети 220 В напряжение каждой выходной обмотки должно составлять 12 В. Вместо самодельного трансформатор T1 можно применить два трансформатора ТПК-2-2×12В , соединенных последовательно по способу, описанному в как показано на рис.

Файл печати устройства PechatStab-2.lay (вариант с двумя трансформаторами ТПК-2-2×12В ) выполнен с помощью программы Sprint Layout 4.0 , которая позволяет выводить рисунок на печать в зеркальном отображении и очень удобна для изготовления печатных плат при помощи лазерного принтера и утюга. Ее можно скачать здесь.


Силовой трансформатор

Трансформатор T2 на 6 кВт, также самодельный, намотанный на тороидальном магнитопроводе габаритной мощностью 3-4 кВт, способом, описанным в . Его обмотка содержит 455 витков провода ПЭВ-2.

Отводы 1,2,3 мотаются проводом диаметром 3 мм. Отводы 4,5,6,7 мотаются шиной сечением 18,0 мм2 (2мм на 9 мм). Такое сечение необходимо, для того чтобы автотрансформатор не грелся в процессе длительной эксплуатации.

Отводы сделаны от 203, 232, 266, 305, 348 и 398-го витка, считая от нижнего по схеме вывода. Напряжение сети подается на отвод 266-го витка.

Если мощность нагрузки не превышает 2,2 кВт, то автотрансформатор T2 может быть намотан на статоре электродвигателя мощностью 1,5 кВт проводом ПЭВ-2. Отводы 1,2,3 мотаются проводом диаметром 2 мм. Отводы 4,5,6,7 мотаются проводом диаметром 3 мм

Число витков обмотки следует пропорционально увеличить в 1,3 раза. Ток срабатывания выключателя-предохранителя QF1 должен быть снижен до 20 А. Перед нагрузкой желательно поставить дополнительный автомат на 10А

При изготовлении автотрансформатора, при неизвестном значении магнитной проницаемости Вмах сердечника, для того, что бы не ошибиться в выборе отношения витков на вольт, необходимо провести практическое исследование статора (см. раздел ниже).

В общем архиве есть программа для расчета отводов автотрансформатора по своим габаритным размерам статора при известном значении магнитной проницаемости Вмах сердечника.

Если мощность нагрузки не превышает 3 кВт, то автотрансформатор T2 может быть намотан на статоре электродвигателя мощностью 4 кВт проводом ПЭВ-2 диаметром 2,8 мм (сечение 6,1 мм2) Число витков обмотки следует пропорционально увеличить в 1,2 раз. Ток срабатывания выключателя-предохранителя QF1 должен быть снижен до 16 А. Можно применить симисторы VS1-VS7 BTA140-800, размещенные на теплоотводе площадью не менее 800 см2.

Настройка

Налаживание осуществляется с помощью ЛАТР -а и двух вольтметров. Необходимо установить пороги переключения нагрузки и убедиться в том, что выходное напряжение стабилизатора находится в допустимых пределах для питаемой аппаратуры.

Обозначим U1, U2, U3, U4, U5, U6, U7 - значения напряжения на движке подстроечного резистора R14, соответствующие напряжению сети 130, 150, 170, 190, 210, 230, 250, 270 В (пороги переключения и отключения нагрузки).

Вместо подстроечных резисторов R15 и R23 временно монтируют постоянные резисторы сопротивлением 10 кОм.

Далее стабилизатор без автотрансформатора T2 включают в сеть через ЛАТР . На выходе ЛАТР -а повышают напряжение до 250 В, затем движком подстроечного резистора R14 устанавливают напряжение U6 равное 3,5 В, измеряя его цифровым вольтметром. После этого понижают напряжение ЛАТР -а до 130 В и измеряют напряжение U1. Пусть, например, оно равно 1,6 В.

Вычисляют шаг изменения напряжения:

∆U=(U6 – U1)/6=(3,5-1,6)/6=0,3166 В ,
ток, текущий через делитель R15-R23
I=∆U/R16=0,3166/2=0,1583 мА

Вычисляют сопротивления резисторов R15 и R23:

R15= U1/I=1,6/0,1583=10,107 кОм,
R23= (Uпит – U6 –∆U)/I=(6–3,5–0,3166)/0,1588=13,792 кОм , где Uпит - напряжение стабилизации микросхемы DA1. Расчет приближенный, так как в нем не учтено влияние резисторов R32-R39, однако его точность достаточна для практической настройки стабилизатора.

Программу для расчета R8,R16 и граничных напряжений переключения можно скачать во вложениях.

Далее устройство отключают от сети и с помощью цифрового вольтметра устанавливают сопротивления резисторов R15 и R23, равные вычисленным значениям и монтируют их на плату вместо постоянных резисторов, упомянутых выше. Снова включают стабилизатор и отслеживают переключение светодиодов, плавно увеличивая напряжения ЛАТР -а от минимального до максимального и обратно. Одновременное свечение двух и более светодиодов указывает на неисправность одной из микросхем DA2, DA3, DD1-DD5. Неисправная микросхема должна быть заменена, поэтому удобнее установить на плате не сами микросхемы, а панели для них.

Убедившись в исправности микросхем, подключают автотрансформатор T2 и нагрузку - лампу накаливания мощностью 100…200 Вт. Снова измеряют пороги переключения и напряжения U1-U7. Для проверки правильности расчетов, меняя ЛАТР -ом входное на Т1 необходимо убедиться в мигании светодиода HL1 при напряжении ниже 130 В, последовательном включении светодиодов HL2 - HL8 при пересечении порогов переключения, указанных выше, а также мигании HL9 при напряжении выше 270 в.

Если максимальное напряжение ЛАТР -а меньше 270 В, устанавливают на его выходе 250 В, вычисляют напряжение U7 по формуле: U7=U6+∆U=3,82 В. Перемещают движок R14 вверх, проверяют, что при напряжении U7 происходит отключение нагрузки, после чего возвращают движок R14 вниз, устанавливая прежнее значение U6, равное 3,5 В.

Завершить налаживание стабилизатора желательно его подключением к напряжению 380 В на несколько часов.

За время эксплуатации нескольких экземпляров стабилизаторов разной мощности (примерно полгода) не было сбоев и отказов в их работе. Не было неисправностей питаемой через них аппаратуры по причине нестабильного напряжения сети.

Литература

1. Коряков С. Стабилизатор сетевого напряжения с микроконтроллерным управлением. - Радио, 2002, №8, с. 26-29.
2. Копанев В. Защита трансформатора от повышенного напряжения сети. - Радио, 1997, №2 с.46.
3. Андреев В. Изготовление трансформаторов. - Радио, 2002, №7, с.58
4. http://rexmill.ucoz.ru/forum/50-152-1

Расчет автотрансформаторa

Вам удалось достать статор из двигателя, но Вы не знаете, из какого материала он выполнен. Вообще при расчете сердечников мощностью выше 1 кВт часто возникают проблемы с исходными данными. Можно легко избежать проблем, если провести исследования имеющегося у Вас сердечника. Сделать это очень просто.

Подготавливаем сердечник для намотки первичной обмотки: обрабатываем острые края, накладываем изолирующие прокладки (в моем случае на тороидальный сердечник я сделал накладки из картона). Теперь наматываем 50 витков провода диаметром 0.5-1 мм. Для измерений нам понадобится амперметр с пределом измерения примерно до 5 ампер, вольтметр переменного напряжения и ЛАТР .MS Excel

N/V= 50/((140-140*0.25) = 0,48 витков на вольт .

Число витков в отводах рассчитывается по средним напряжениям каждого из входных диапазонов контроллера и составит:

Отвод №1 – 128,5 В х 0,48 В = 62 Вит
Отвод №2 – 147 В х 0,48 В = 71 Вит
Отвод №3 – 168 В х 0,48 В = 81 Вит
Отвод №4 – 192 В х 0,48 В = 92 Вит
Отвод №5 – 220 В х 0,48 В = 106 Вит (с него же снимается напряжение на нагрузку)
Отвод №6 – 251,5 В х 0,48 В = 121 Вит
Отвод №7 – 287,5 В х 0,48 В = 138 Вит (полное количество витков автотрансформатора)

Вот и вся проблема!

Модернизация

Понравилось это.

Отличие подаваемого напряжения от эталонных 220 В может быть обусловлено как качеством трансформаторов и проводов, так и удаленностью потребителя от распределяющего устройства. Также одним из важных факторов, влияющих на стабильность напряжения, является физический износ, и перегрузка линий электропередач. Все это приводит к просадкам и скачкам вольтажа, что отрицательно сказывается на всех без исключения электроприборах.

Стабилизаторы напряжения на 220 В решают эту проблему. Схема подобных устройств позволяет сглаживать скачки в сети, и получать на выходе стабильные 220 Вольт с небольшой допустимой погрешностью. При этом не обязательно покупать такой аппарат – при желании и минимальных знаниях схемотехники его можно собрать своими руками в домашних условиях.

Разновидности стабилизаторов

Все промышленные образцы такого оборудования можно разделить на две большие группы:

  • электромеханические;
  • импульсные.

Электромеханические

Работа электромеханических устройств основана на сервоприводе, который способен изменять количество витков обмотки (а значит – и выходящее напряжение) перемещением токопроводящего ползунка по реостату. Такие аппараты дешевле всех других моделей, и обладают очень хорошими показателями стабилизации. Однако они чаще ломаются из-за наличия множества механических деталей.

Но самый главный их минус – скорость срабатывания. Из-за того, что привод перемещает токосниматель не мгновенно, задержка стабилизации может составлять до 0.1 секунды, что катастрофически много для приборов, чувствительных к перепадам. Другими словами, такой стабилизатор может попросту не успеть защитить современную электронику. К тому же, ввиду наличия механических частей, воспроизвести такой прибор дома – нетривиальная задача.

Импульсные

Импульсными называют стабилизаторы, работа которых основывается на принципе накапливания тока, и выдачи его потребителю отрывками – импульсами. Эти временные промежутки позволяют системе накопить нужный ток в , и после выдать стабилизированное питание. К таким аппаратам относят и приборы, работа которых основана на симисторах и тиристорах.

Подобные устройства дороже своих электромеханических аналогов, но и значительно надежнее – нет трущихся и движущихся частей, а значит, и ломаться, по сути, нечему. Правда показатели стабилизации у них хуже – они способны лишь на пропорциональное повышение или понижение входящих показателей. Зато скорость срабатывания – до 20 миллисекунд, а этого достаточно, чтобы обезопасить даже самые чувствительные домашние электроприборы. К тому же – такой аппарат можно собрать своими руками, обладая необходимой сноровкой и элементной базой.

Кроме разделения по принципу стабилизации, существует разделение на одно- и трехфазные устройства. Но ввиду того, что дома обычно используется однофазное питание, трехфазные аппараты мы в расчет не берем.

Схема стабилизатора напряжения на 220 В

В схеме, которую мы рассмотрим как пример создания стабилизатора своими руками, используются симисторы. Благодаря хорошо подобранной элементной базе, этот прибор сможет обеспечивать стабильные показатели при подаче на него от 130 до 270 В, и будет выдерживать подключение к нему нагрузки до 6 кВт. Но самое главное – скорость срабатывания – около 10 мс! Вот сама схема будущего стабилизатора напряжения на 220 В:

Не смотря на кажущуюся сложность схемы стабилизатора напряжения на 220 В, в производстве подобного прибора своими руками проблем возникнуть не должно, если вы обладаете хотя бы начальными знаниями в электрике. Итак, список комплектующих, необходимых для успешной сборки:

  • Блок питания;
  • Выпрямитель (корректирующий амплитуду напряжения);
  • Контроллер и компаратор;
  • Усилительный каскад;
  • Устройство задержки включения нагрузки;
  • Автоматический трансформатор;
  • Ключи;
  • Выключатель с функцией предохранителя.

Также будут необходимы провода для соединения элементов и намотки трансформаторов, печатная плата для сборки схемы, а из инструментов – паяльник, припой и пинцет.

Процесс изготовления стабилизатора на 220 В своими руками

Для начала нужно взять подходящий по размерам (примерно 120×90 мм) кусок фольгированного текстолита для изготовления печатной платы. Саму схему можно перенести на плоскость при помощи утюга и распечатанной на бумаге принципиальной схемы:

Получив необходимую архитектуру, можно приступать к намотке трансформаторов (можно купить и готовые ТПК-2-2, на 12В и соединить их последовательно, но можно изготовить самостоятельно). Для намотки каждого транса потребуется магнитопровод сечением 1.87 см 2 и три провода. Первая обмотка – 8669 витков провода сечением 0.064 мм. Две другие обмотки выполняются уже проводом с площадью сечения 0.185 мм, и каждая из них будет содержать по 522 витка.

Второй трансформатор отличается – он собирается на тороидальном магнитопроводе, но количество витков уже будет 455. Второй трансформаторный блок должен содержать 7 отводов, и если для первых трех достаточно провода 3мм 2 , то для остальных необходимо применять шину с площадью сечения не менее 18 мм 2 . Это позволит избежать нагревания при работе устройства, и повысит общую безопасность.

После сборки трансформаторов, их необходимо соединить последовательно согласно схеме, приведенной ниже:

Остальные комплектующие для сборки нужно покупать. Приобретя все необходимое, можно приступать к сборке прибора согласно принципиальной электрической схеме. Важно помнить, что микросхема контроллера и симисторы необходимо монтировать на охлаждающем радиаторе с применением термопроводящей пасты или клея.

Собрав все элементы воедино, вы получите надежный и качественный прибор с характеристиками, которые удовлетворят все бытовые потребности обычного жилого дома.

Если же подобная схема для вас сложна – лучше выбрать иной вариант самодельного стабилизатора, к примеру – релейный тип. Схема такого стабилизатора на 220 В не такая сложная, как у симисторного варианта, и ее обычно приводят как пример во всех журналах для радиолюбителей:

Схема проста, и содержит в себе 3 блока стабилизации, с разным порогом напряжения. Каждый из них состоит из стабилитрона и резисторов. Кроме блоков, в схеме есть два транзисторных ключа, управляющих электромагнитными реле. Благодаря простоте и относительной надежности, такой прибор станет отличной альтернативой более сложным устройствам.

Плюсы и минусы самодельного стабилизатора

Среди положительных моментов такого аппарата стоит отметить:

  • Довольно высокие показатели стабилизации, достаточные для бытовых нужд;
  • Низкая цена в сравнении с фабричными устройствами;
  • Доступность самостоятельного ремонта.

Однако помимо достоинств, такой стабилизатор будет обладать и рядом недостатков:

  • Сборка своими руками уступает по качеству фабричной (пайка, намотка трансформаторов и т.д.);
  • Сложная и кропотливая настройка готового прибора;
  • Отсутствие возможности получить точные данные стабилизации ввиду отсутствия специального оборудования.

В заключении хотелось бы сказать, что при отсутствии хотя бы начальных навыков в схемотехнике и опыта пайки радиодеталей, браться за сборку такого устройства не стоит, так как это ответственный и важный узел в электросети дома, от которого зависит сохранность всех электроприборов.

Основные данные по конструкции стабилизатора напряжения есть в этом видео :

Электрическая сеть во многих наших домах не может похвастаться высоким качеством, в особенности это актуально для сельской местности, которая удалена от города. Поэтому нередко происходят перепады напряжения. Местные производители электрических приборов учитывают данное обстоятельство и предусматривают запас прочности. Но многие люди пользуются в основном заграничной техникой, для которой такие скачки губительны. В связи с чем необходимо пользоваться специальными устройствами. И не обязательно их покупать в магазинах, можно изготовить стабилизатор напряжения 220В своими руками по схеме. Задача эта не совсем сложная, если делать все по инструкции.

Только перед сборкой необходимо ознакомиться с существующими видами подобных устройств и узнать, каков их принцип действия.

Вынужденная мера

В идеале электросеть может работать эффективно при незначительных перепадах напряжения - не более 10%, как большую, так и в меньшую сторону от номинала 220В. Однако, как показывают реальные условия эксплуатации, изменения эти временами довольно значительны. А это уже грозит выходом из строя подключенных приборов.

И чтобы избежать таких неприятностей, создано такое устройство, как стабилизатор напряжения. И если ток выйдет за границы допустимого значения, устройство в автоматическом режиме обесточит подключенные электроприборы.

Чем еще может быть вызвана необходимость в таком устройстве и почему некоторые люди задумываются над изготовлением самодельного стабилизатора напряжения 220В по схеме? Наличие такого помощника оправдано в силу следующих возможностей:

  • Бытовая техника гарантировано будет работать долгое время.
  • Мониторинг напряжения электросети.
  • Заданный уровень напряжения поддерживается автоматически.
  • Перепады тока не сказываются на электроприборах.

Если в месте проживания такие электрические «аномалии» случаются часто, стоит задуматься над приобретением хорошего стабилизатора. В крайнем случае собрать его самостоятельно.

Разновидности стабилизаторов

Главная составляющая любого такого оберегающего электрического устройства - это его автотрансформатор регулируемого типа. В настоящее время многими производителями выпускается несколько видов приборов, у которых реализована своя технология стабилизации напряжения. К таковым относятся две основные схемы стабилизатора напряжения 220В для дома:

  • Электромеханические.
  • Электронные.

Существуют еще и феррорезонансные аналоги, которые в быту практически не используются, но о них будет сказано чуть позднее. Теперь же стоит перейти к описанию существующих моделей.

Электромеханические (сервоприводные) устройства

Регулировка напряжения электросети производится посредством ползунка, который передвигается по обмотке. Одновременно с этим задействуется разное количество витков. Все мы учились в школе, а некоторые может быть имели дело с реостатом на уроках физики.

По такому аналогичному принципу работает напряжения. Только перемещение ползунка осуществляется не вручную, а при помощи электродвигателя, называемого сервоприводом. Знать устройство этих приборов просто необходимо, если есть желание изготовить стабилизатор напряжения 220В своими руками по схеме.

Электромеханические устройства отличаются высокой надежностью, и обеспечивают плавную регулировку напряжения. Характерные преимущества:

  • Стабилизаторы работают под любой нагрузкой.
  • Ресурс существенно больше, чем у прочих аналогов.
  • Доступная стоимость (вполовину ниже, чем у электронных приборов)

К сожалению, при всех достоинствах присутствуют и недостатки:

  • В силу механического устройства задержка срабатывания очень заметна.
  • В таких приборах применяются угольные контакты, которые подвержены естественному износу с течением времени.
  • Присутствие шума при работе, хоть и его практически не слышно.
  • Малый рабочий диапазон 140-260 В.

Стоит заметить, что в отличие от инверторного стабилизатора напряжения 220В (своими руками по схеме его можно изготовить вопреки кажущимся сложностям), здесь еще имеется трансформатор. А что касается принципа работы, то анализ напряжения производится электронным блоком управления. Если он заметит значительные отклонения от номинального значения, он посылает команду на перемещение ползунка.

Ток регулируется путем подключения большего количества витков трансформатора. На тот случай, если прибор не успевает своевременно среагировать на чрезмерное превышение напряжения, в устройстве стабилизатора предусмотрено реле.

Электронные стабилизаторы

Принцип действия электронных приборов устроен немного иначе. Здесь в основе лежат несколько схем:

  • тиристорная или семисторная;
  • релейная;
  • инверторная.

Работают такие устройства бесшумно, за исключением релейных стабилизаторов. У них переключение режимов осуществляется при помощи силовых реле, которыми управляет электронный блок управления. Поскольку они механически разъединяют контакты, то во время эксплуатации таких приборов время от времени слышен шум. Для кого-то это может быть серьезным минусом.

Поэтому лучшим выбором будет приобретение или изготовление инверторного стабилизатора напряжения 220В своими руками, схему которого найти несложно.

Другие электронные аналоги имеют специальные ключи тиристоры и семисторы и поэтому работают они в бесшумном режиме. Также это позволяет стабилизаторам срабатывать практически мгновенно. Среди прочих достоинств можно выделить:

  • отсутствие нагрева;
  • рабочий диапазон составляет 85-305 В (у релейных приборах он равен 100-280 В);
  • компактные габариты;
  • низкая стоимость (опять-таки применимо к релейным стабилизаторам).

Общий недостаток электронных устройств заключается в ступенчатой схеме регулировки напряжение электросети. К тому же тиристорные приборы имеют самую высокую стоимость, но в то же время и отличаются весьма долгим сроком службы.

Инверторная технология

Отличительной особенностью таких устройств является отсутствие трансформатора в конструкции прибора. Однако регулировка напряжения осуществляется электронным способом, а поэтому он относится к предыдущему типу, но является как бы отдельным классом.

Если есть желание изготовить самодельный стабилизатор напряжения 220В, схему которого нетрудно достать, то лучше выбрать именно инверторную технологию. Ведь тут интересен сам принцип работы. Инверторные стабилизаторы оснащаются двойными фильтрами, что позволяет минимизировать отклонения напряжения от номинального значения в пределах 0,5%. Поступающий в устройство ток, преобразуется в постоянное напряжение, проходит через весь прибор, а перед выходом снова принимает прежнюю форму.

Феррорезонансные аналоги

Принцип действия феррорезонансных стабилизаторов основывается на эффекте магниторезонанса, возникающий в той системе с дросселями и конденсаторами. В работе они немного похожи на электромеханические устройства, только вместо ползунка здесь ферромагнитный сердечник, перемещающийся относительно катушек.

Подобная система отличается высокой надежностью, однако имеет большие размеры и издает много шума при работе. Также присутствует серьезный недостаток - функционируют такие приборы лишь под нагрузкой.

Если ранее такая схема сетевого стабилизатора напряжения 220В пользовалась популярностью, то теперь от нее лучше отказаться. К тому же здесь не исключены синусоидальные искажения. По этой причине для современных бытовых электрических приборов такой вариант не подходит. Но если в хозяйстве имеются мощные электродвигатели, ручные инструменты, сварочные аппараты, то такие стабилизаторы еще применимы.

Феррорезонансные стабилизаторы были широко распространены в быту 20 или 30 лет назад. В то время через них питались старые телевизоры, поскольку имели особую конструкцию, которая не позволяло безопасно использовать электросеть напрямую. Существуют современные модели этих стабилизаторов, которые лишены многих недостатков, но стоят они очень дорого.

Самодельный аппарат

А какую можно реализовать схему стабилизатора напряжения 220В своими руками? Самый простой вариант стабилизатора состоит из минимального количества комплектующих:

  • трансформатор;
  • конденсатор;
  • диоды;
  • резистор;
  • провода (для соединения микросхем).

Используя простейшие навыки, собрать устройство не так сложно, как может показаться. Но при наличии старого сварочного аппарата все упрощается, поскольку он практически уже собран. Однако проблема в том, что не у каждого человека найдется такой сварочный аппарата, а поэтому лучше подыскать другой способ для самодельного устройства.

По этой причине рассмотрим, как можно изготовить некоторый аналог симисторного стабилизатора. Данный прибор будет рассчитан на входной рабочий диапазон 130-270 В, а на выход будет подаваться от 205 до 230 В. Большая разница входного тока это скорее плюс, а вот для выходного - это уже минус. Но для многих бытовых приборов эта разница допустима.

Что касается мощности, то схема 220В, своими руками изготавливаемого, допускает подключение электроприборов до 6 кВт. Переключение нагрузки производится в течение 10 миллисекунд.

Преимущества самодельного устройства

У стабилизатора, изготовленного самостоятельно, есть своим плюсы и минусы, о которых непременно следует знать. Главные преимущества:

  • низкая стоимость;
  • ремонтопригодность;
  • самостоятельное проведение диагностики.

Самое очевидное достоинство заключается в невысокой себестоимости. Все детали нужно будет приобрести по отдельности, а это все равно несравнимо с готовыми стабилизаторами.

В случае выхода из строя какого-нибудь элемента приобретенного стабилизатора напряжения, вряд ли его можно заменить самому. В этом случае остается только вызывать мастера на дом или везти его в сервисный центр. Даже если имеются определенные знания в области электротехники, найти подходящую деталь не так просто. Совсем другое дело, если прибор был изготовлен собственноручно. Все детали уже знакомы и для покупки новой, достаточно наведаться в магазин.

Если кто-либо ранее уже собирал схему стабилизатора напряжения 220В 10кВт своими руками, значит, человек уже разбирается во многих тонкостях. Это значит, что выявить неисправность не составит особого труда.

Недостатки, которые следует учитывать

Теперь коснемся некоторых минусов. Кто и как бы себя ни нахваливал, он не сможет тягаться с настоящими профессионалами по электрической части. По этой простой причине надежность самодельного стабилизатора будет уступать фирменным аналогам. Обусловлено это тем, что на производстве используются высокоточные контрольно-измерительные приборы, которых нет у рядовых потребителей.

Другой момент - более широкий рабочий диапазон напряжения. Если у магазинного варианта он составляет от 215 до 220В, то у аппарата, созданного в домашних условиях, этот параметр будет превышен в 2 или даже 5 раз. А это уже критично для большого количества современной бытовой техники.

Комплектующие

Чтобы собрать по схеме электронный стабилизатор напряжения 220В своими руками, не обойтись без таких компонентов:

  • блока питания;
  • выпрямителя;
  • компаратора;
  • контроллера;
  • усилителей;
  • светодиодов;
  • узла задержки;
  • автотрансформатора;
  • оптронных ключей;
  • выключателя-предохранителя.

Также нужен будет паяльник и пинцет.

Особенности домашнего производства

Все элементы будут размещаться на печатной плате размером 115х90 мм. Для чего можно взять фольгированный стеклотекстолит. Схему расположения всех рабочих компонентов можно распечатать на лазерном принтере, а после перенести все, используя утюг. Сам пример ниже.

Теперь можно переходить к изготовлению трансформаторов. И здесь не все так просто. Всего нужно изготовить два элемента. Для первого нужно взять:

  • магнитопровод с площадью сечения 187 мм 2 ;
  • провода ПЭВ-2 в количестве трех штук.

Причем один из проводов должен быть толщиной 0,064 мм, а другой - 0,185 мм. Для начала создается первичная обмотка с количеством витков - 8669. У последующих обмоток витков поменьше - 522.

Электрическая схема стабилизатора напряжения 220В предусматривает наличие двух трансформаторов. Поэтому после сборки первого элемента стоит переходить к изготовлению второго. А для этого уже нужен тороидальный магнитопровод. Обмотка здесь также делается из провода ПЭВ-2, разве что число витков будет равным 455. Кроме того, от второго трансформатора должны исходит семь отводов. Для первых трех нужен провод диаметром 3 мм, а остальные 4 будут из шин сечением 18 мм². Благодаря этому трансформатора не будет нагреваться во время использования стабилизатора.

Задачу можно существенно упростить, если взять два уже готовых элемента ТПК-2-2 12В и соединить их последовательно. Все прочие необходимые детали нужно приобрести в магазине.

Сборочный процесс

Сборка стабилизатора начинается с установки микросхемы на теплоотвод. Это может быть алюминиевая пластина площадью не менее 15 см 2 , на которой также следует расположить симисторы. Для эффективной работы стабилизатора не обойтись без микроконтроллера, для чего можно использовать микросхему КР1554ЛП5.

Конечно, это не схема 220В, но для бытовых нужд такого прибора вполне достаточно. На следующем этапе нужно расположить светодиоды, причем брать нужно мигающие. Однако можно использовать и прочие, к примеру, АЛ307КМ либо L1543SRC-Е, у которых яркое красное свечение. Если по какой-нибудь причине не удастся расположить их как того требует схема, можно разместить их в любом удобном месте.

Если кто-либо увлекался подобными сборками ранее, то собрать собственный стабилизатор не составит большого труда. Это не только обогащение опыта, но и существенная экономия, поскольку несколько тысяч рублей останутся нетронутыми.

Необходимо правильно реализовать схему подключения И тут есть два способа:

  1. После счетчика - подходит, когда нужно защитить всю электросеть квартиры или дома. Непосредственно на выход от электросчетчика ставится автомат, а регулятор напряжения подключается уже к его выводу. К самому стабилизатору при необходимости тоже можно подключить автоматический выключатель.
  2. Подключение в розетку - в этом случае под защитой окажутся только те приборы, которые подключены к регулятору.

В процессе работы прибор будет греться, а тесное пространство не обеспечит должное охлаждение. В результате стабилизатор быстро выйдет из строя. Оптимальный вариант в этом случае - открытая площадка.

Если это невозможно в силу разных причин, специально для прибора можно соорудить нишу. При этом необходимо выдержать не менее 10 см от поверхности ниши до стенок стабилизатора. После сборки устройства стоит его проверить и обратить внимание на наличие каких-либо посторонних шумов.

После того как по 220В своими руками успешно создан, не стоит думать, что на этом все заканчивается. Необходимо каждый год проводить профилактические работы, которые связаны с осмотром стабилизатора и перетяжкой контактов при необходимости. Только так можно быть уверенным в том, что самодельный «продукт» будет работать также эффективно, как и производственные аналоги.

В качестве заключения

Вне всякого сомнения, самостоятельное изготовление стабилизатора требует определенных знаний и навыков. Также нужно понимать, как именно работают такие устройства, и знать некоторые нюансы. Помимо этого, потребуется приобрести все необходимые комплектующие и выполнить правильный монтаж.

Возможно, вся работу для кого-то покажется сложной. Поэтому если нет уверенности в своих силах, то лучше пойти в магазин не за деталями, а за самим прибором. К тому же на все модели предусмотрен определенный гарантийный период.

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Рассказать друзьям